Поддерживать
www.wikidata.ru-ru.nina.az
Teoriya diofantovyh priblizhenij razdel teorii chisel izuchayushij priblizheniya veshestvennyh chisel racionalnymi nazvan imenem Diofanta Aleksandrijskogo Pervoj zadachej byl vopros naskolko horosho veshestvennoe chislo mozhet byt priblizheno racionalnymi chislami Dlya etoj zadachi racionalnoe chislo a b yavlyaetsya horoshim priblizheniem veshestvennogo chisla a esli absolyutnoe znachenie raznosti a b i a ne mozhet byt umensheno esli zamenit a b drugoj racionalnoj drobyu s menshim znamenatelem Zadacha byla reshena v XVIII stoletii posredstvom nepreryvnyh drobej Esli izvestny luchshie priblizheniya zadannogo chisla glavnoj zadachej oblasti yavlyaetsya poisk tochnyh verhnej i nizhnej granic vysheupomyanutoj raznosti vyrazhennoj kak funkciya ot znamenatelya Pohozhe granicy zavisyat ot prirody veshestvennyh chisel nizhnyaya granica priblizheniya racionalnyh chisel drugim racionalnym chislom bolshe chem nizhnyaya granica algebraicheskih chisel kotoraya sama bolshe nizhnej granicy dlya veshestvennyh chisel Takim obrazom veshestvennye chisla kotorye mogut byt luchshe priblizheny chem granica dlya algebraicheskih chisel eto opredelyonno transcendentnye chisla Eto dalo vozmozhnost Liuvillyu v 1844 godu poluchit pervoe yavno zadannoe transcendentnoe chislo Pozdnee s pomoshyu analogichnogo metoda bylo dokazano chto p displaystyle pi i e displaystyle e yavlyayutsya transcendentnymi Takim obrazom diofantovy priblizheniya i teoriya transcendentnyh chisel yavlyayutsya ochen blizkimi oblastyami i imeyut mnogo obshih teorem i metodov Diofantovy priblizheniya takzhe imeyut vazhnye prilozheniya v izuchenii diofantovyh uravnenij Istoricheskie zamechaniyaPosle togo kak Borel i Hinchin ustanovili chto pochti vse chisla dopuskayut lish naihudshuyu approksimaciyu racionalnymi chislami sformirovalos napravlenie metricheskoj teorii diofantovyh priblizhenij teoriya priblizhenij nezavisimyh velichin kotoroe otnositsya k klassicheskoj vetvi diofantovyh priblizhenij Novoe veyanie prishlo s neozhidannoj storony Maler klassificiruya transcendentnye chisla sformuliroval osnovnuyu metricheskuyu problemu teorii transcendentnyh chisel gipotezu o mere transcendentnosti pochti vseh chisel Kogda gipoteza byla dokazana stala otkryvatsya glubokaya svyaz mezhdu klassicheskoj teoriej diofantovyh priblizhenij i metricheskoj teoriej transcendentnyh chisel Rezultatom stalo razvitie novogo napravleniya teoriya priblizhenij zavisimyh velichin V sovremennoj teorii vydelyaetsya tri osnovnyh podhoda Globalnyj izuchayushij obshie zakony approksimacii Primery globalnyh utverzhdenij teoremy Dirihle i Kronekera gipoteza Minkovskogo o proizvedeniyah linejnyh form Individualnyj podhod kasaetsya svojstv specialnyh chisel algebraicheskie chisla e p ln 2 displaystyle e pi ln 2 ili trebuet postroeniya chisel s opredelyonnymi svojstvami chisla Liuvillya T chisla Malera Metricheskij podhod zanimayushij promezhutochnoe polozhenie Podhod trebuet opisaniya approksimacionnyh svojstv chisel na osnove teorii mery Luchshie diofantovy priblizheniya veshestvennyh chiselOsnovnaya statya Nepreryvnaya drob Priblizhenie veshestvennyh chisel racionalnymi Esli zadano veshestvennoe chislo a sushestvuyut dva puti dlya opredeleniya luchshego diofantova priblizheniya chisla a V pervom opredelenii racionalnoe chislo p q yavlyaetsya nailuchshim diofantovym priblizheniem chisla a esli a pq lt a p q displaystyle left alpha frac p q right lt left alpha frac p q right dlya lyubogo racionalnogo chisla p q otlichnogo ot p q takogo chto 0 lt q q Vo vtorom opredelenii vysheprivedyonnoe neravenstvo zamenyaetsya na qa p lt q a p displaystyle left q alpha p right lt left q prime alpha p prime right Nailuchshee priblizhenie dlya vtorogo opredeleniya yavlyaetsya nailuchshim dlya pervogo opredeleniya no obratnoe neverno Teoriya nepreryvnyh drobej pozvolyaet vychislit nailuchshee priblizhenie veshestvennogo chisla dlya vtorogo opredeleniya drobi shodyatsya kak obychnye nepreryvnye drobi Dlya pervogo opredeleniya sleduet rassmatrivat takzhe promezhutochnye drobi Primechanie Uslovimsya oboznachat cherez pkqk displaystyle frac p k q k podhodyashie drobi dannoj cepnoj drobi Drobi pk 2qk 2 pk 2 pk 1qk 2 qk 1 pk 2 2pk 1qk 2 2qk 1 pk 2 akpk 1qk 2 akqk 1 pkqk displaystyle tfrac p k 2 q k 2 tfrac p k 2 p k 1 q k 2 q k 1 tfrac p k 2 2p k 1 q k 2 2q k 1 tfrac p k 2 a k p k 1 q k 2 a k q k 1 tfrac p k q k obrazuyut pri chyotnom k vozrastayushuyu a pri nechyotnom k ubyvayushuyu posledovatelnost Krajnie chleny etoj posledovatelnosti podhodyashie drobi odinakovoj chyotnosti Promezhutochnye mezhdu nimi chleny nazyvayutsya promezhutochnymi drobyami Naprimer konstanta e 2 718281828459045235 imeet predstavlenie v vide nepreryvnoj drobi 2 1 2 1 1 4 1 1 6 1 1 8 1 displaystyle 2 1 2 1 1 4 1 1 6 1 1 8 1 ldots Eyo luchshie predstavleniya po vtoromu opredeleniyu 3 83 114 197 8732 displaystyle 3 tfrac 8 3 tfrac 11 4 tfrac 19 7 tfrac 87 32 ldots V to vremya kak po pervomu opredeleniyu luchshimi predstavleniyami budut 3 52 83 114 197 4918 6825 8732 10639 displaystyle 3 tfrac 5 2 tfrac 8 3 tfrac 11 4 tfrac 19 7 tfrac 49 18 tfrac 68 25 tfrac 87 32 tfrac 106 39 ldots Mera tochnosti priblizhenijOchevidnoj meroj tochnosti diofantova priblizheniya veshestvennogo chisla a racionalnym chislom p q yavlyaetsya a pq displaystyle left alpha frac p q right Odnako etu velichinu vsegda mozhno sdelat kak ugodno maloj za schyot uvelicheniya absolyutnyh znachenij p i q Po etoj prichine tochnost priblizheniya obychno sravnivaetsya s nekotoroj funkciej f ot znamenatelya q obychno otricatelnoj stepeni znamenatelya Dlya takoj ocenki mozhno ispolzovat verhnyuyu granicu nizhnih granic tochnosti Nizhnyaya granica obychno opisyvaetsya teoremoj napodobie Dlya lyubogo elementa a nekotorogo podmnozhestva veshestvennyh chisel i lyubogo racionalnogo chisla p q imeem a pq gt ϕ q displaystyle left alpha frac p q right gt phi q V nekotoryh sluchayah lyuboe racionalnoe chislo mozhet byt zameneno na vse racionalnye chisla za isklyucheniem konechnogo kolichestva i eto kolichestvo uchityvaetsya putyom umnozheniya f na nekotoruyu konstantu zavisyashuyu ot a Dlya verhnih granic mozhno brat v raschyot fakt chto ne vse luchshie diofantovy priblizheniya poluchaemye pri postroenii nepreryvnoj drobi mogut dat zhelaemuyu tochnost Poetomu teoremy prinimayut formu Dlya lyubogo elementa a nekotorogo podmnozhestva veshestvennyh chisel sushestvuet beskonechno mnogo racionalnyh chisel p q takih chto a pq lt ϕ q displaystyle left alpha frac p q right lt phi q Ploho priblizhaemye chisla Ploho priblizhaemoe chislo eto chislo x dlya kotorogo sushestvuet polozhitelnaya konstanta c takaya chto dlya vseh racionalnyh p q my imeem x pq gt cq2 displaystyle left x frac p q right gt frac c q 2 Ploho priblizhaemye chisla eto v tochnosti chisla s ogranichennymi nepolnymi chastnymi Nizhnie granicy dlya diofantovyh priblizhenijPriblizhenie racionalnyh chisel drugimi racionalnymi chislami Racionalnoe chislo a ab displaystyle alpha frac a b mozhet byt ochevidnym obrazom prekrasno priblizheno chislami piqi iaib displaystyle tfrac p i q i tfrac i a i b pri lyubom polozhitelnom celom i Esli pq a ab displaystyle tfrac p q not alpha tfrac a b my imeem ab pq aq bpbq 1bq displaystyle left frac a b frac p q right left frac aq bp bq right geq frac 1 bq poskolku aq bp displaystyle aq bp yavlyaetsya polozhitelnym celym i poetomu ne menshe 1 Eta tochnost priblizheniya ploha otnositelno irracionalnyh chisel sm sleduyushij razdel Mozhno zametit chto privedyonnoe dokazatelstvo ispolzuet variant principa Dirihle neotricatelnoe chislo ne ravnoe 0 ne menshe 1 Eta yavno trivialnoe zamechanie ispolzuetsya pochti vo vseh dokazatelstvah dlya nizhnih granic diofantovyh priblizhenij dazhe bolee slozhnyh Podvodya itogi racionalnoe chislo prekrasno priblizhaetsya im samim no ploho priblizhaetsya lyubym drugim racionalnym chislom Priblizhenie algebraicheskih chisel rezultat Liuvillya Osnovnaya statya Liuvill Zhozef V 1840 h godah Zhozef Liuvill poluchil pervuyu nizhnyuyu granicu dlya priblizheniya algebraicheskih chisel esli x yavlyaetsya irracionalnym algebraicheskim chislom stepeni n nad racionalnymi chislami to sushestvuet konstanta c x gt 0 takaya chto x pq gt c x qn displaystyle left x frac p q right gt frac c x q n dlya vseh celyh p i q gde q gt 0 Etot rezultat pozvolil emu poluchit pervyj dokazannyj primer transcendentnogo chisla konstanty Liuvillya j 1 10 j 0 110001000000000000000001000 displaystyle sum j 1 infty 10 j 0 110001000000000000000001000 ldots kotoraya ne udovletvoryaet teoreme Liuvillya kakuyu by stepen n ni vybrali Eta svyaz mezhdu diofantovymi priblizheniyami i teoriej transcendentnyh chisel nablyudaetsya do nastoyashego vremeni Mnogie tehniki dokazatelstv yavlyayutsya obshimi dlya etih dvuh oblastej Priblizhenie algebraicheskih chisel teorema Tue Zigelya Rota Osnovnaya statya Bolee veka bylo mnogo popytok uluchshit teoremu Liuvillya lyuboe uluchshenie granicy pozvolyaet nam dokazat transcendentnost bolshego kolichestva chisel Osnovnye uluchsheniya sdelali Aksel Tue Karl Zigel Frimen Dajson i Klaus Rot privedshie v konce koncov k teoreme Tue Zigelya Rota Esli x yavlyaetsya irracionalnym algebraicheskim chislom i e maloe polozhitelnoe veshestvennoe chislo to sushestvuet polozhitelnaya konstanta c x e takaya chto x pq gt c x e q2 e displaystyle left x frac p q right gt frac c x varepsilon q 2 varepsilon dlya lyubyh celyh chisel p i q takih chto q gt 0 V nekotorom smysle etot rezultat optimalen poskolku utverzhdenie teoremy neverno pri e 0 Eto neposredstvennoe sledstvie verhnih granic opisannyh nizhe Sovmestnye priblizheniya algebraicheskih dannyh Osnovnaya statya Vposledstvii angl obobshil eto dlya sluchaya sovmestnyh priblizhenij dokazav chto esli x1 xn yavlyayutsya algebraicheskimi chislami takimi chto 1 x1 xn linejno nezavisimy nad racionalnymi chislami i zadano lyuboe polozhitelnoe veshestvennoe chislo e to sushestvuet tolko konechnoe chislo racionalnyh n kortezhej p1 q pn q takih chto xi pi q lt q 1 1 n e i 1 n displaystyle x i p i q lt q 1 1 n varepsilon quad i 1 ldots n Opyat etot rezultat optimalen v tom smysle chto nelzya ubrat e iz eksponenty Effektivnye granicy Vse predydushie nizhnie granicy ne yavlyayutsya angl v smysle chto dokazatelstvo ne dayot puti vychislit konstantu v utverzhdenii Eto oznachaet chto nevozmozhno ispolzovat dokazatelstvo teoremy dlya polucheniya granic reshenij sootvetstvuyushego diofantova uravneniya Odnako eta tehnika chasto mozhet byt ispolzovana dlya ogranicheniya chisla reshenij takogo uravneniya Tem ne menee usovershenstvovanie angl Feldmanom obespechivaet effektivnuyu granicu esli x yavlyaetsya algebraicheskim chislom stepeni n nad racionalnymi chislami to sushestvuyut effektivno vychislimye konstanty c x gt 0 i 0 lt d x lt n takie chto x pq gt c x q d x displaystyle left x frac p q right gt frac c x q d x vypolnyaetsya dlya vseh racionalnyh chisel Odnako kak i dlya lyuboj effektivnoj versii teoremy Bejkera konstanty d i 1 c stol veliki chto etot effektivnyj rezultat na praktike primenit nevozmozhno Verhnyaya granica dlya diofantovyh priblizhenijObshaya verhnyaya granica Osnovnaya statya Teorema Gurvica teoriya chisel Pervym vazhnym rezultatom o verhnih granicah dlya diofantovyh priblizhenij yavlyaetsya teorema Dirihle o priblizheniyah iz kotoroj sleduet chto dlya lyubogo irracionalnogo chisla a sushestvuet beskonechno mnogo drobej pq displaystyle tfrac p q takih chto a pq lt 1q2 displaystyle left alpha frac p q right lt frac 1 q 2 Otsyuda sleduet nemedlenno chto nevozmozhno izbavitsya ot e v utverzhdenii teoremy Tue Zigelya Rota Cherez neskolko let eta teorema byla uluchshena do sleduyushej teoremy Borelya 1903 Dlya lyubogo irracionalnogo chisla a sushestvuet beskonechno mnogo drobej pq displaystyle tfrac p q takih chtoby a pq lt 15q2 displaystyle left alpha frac p q right lt frac 1 sqrt 5 q 2 Poetomu 15q2 displaystyle frac 1 sqrt 5 q 2 yavlyaetsya verhnej granicej diofantovyh priblizhenij lyubogo irracionalnogo chisla Konstanta v etom rezultate ne mozhet byt uluchshena bez isklyucheniya nekotoryh irracionalnyh chisel sm nizhe Ekvivalentnye veshestvennye chisla Opredelenie Dva veshestvennyh chisla x y displaystyle x y nazyvayutsya ekvivalentnymi esli imeyutsya celye chisla a b c d displaystyle a b c d s ad bc 1 displaystyle ad bc pm 1 takie chto y ax bcx d displaystyle y frac ax b cx d Ekvivalentnost opredelyaetsya celym preobrazovaniem Myobiusa nad veshestvennymi chislami ili chlenom modulyarnoj gruppy SL2 Z displaystyle text SL 2 pm mathbb Z mnozhestvom obratimyh 2 2 matric nad celymi chislami Kazhdoe racionalnoe chislo ekvivalentno 0 Takim obrazom racionalnye chisla yavlyaetsya klassom ekvivalentnosti etogo otnosheniya Eta ekvivalentnost mozhet ohvatyvat obychnye nepreryvnye drobi kak pokazyvaet sleduyushaya teorema Serre Teorema Dva irracionalnyh chisla x i y ekvivalentny togda i tolko togda kogda sushestvuet dva polozhitelnyh celyh h i k takih chto pri predstavlenii chisel x i y v vide nepreryvnyh drobej x u0 u1 u2 displaystyle x u 0 u 1 u 2 ldots y v0 v1 v2 displaystyle y v 0 v 1 v 2 ldots vypolnyaetsya uh i vk i displaystyle u h i v k i dlya lyubogo neotricatelnogo celogo i Spektr Lagranzha Osnovnaya statya Kak skazano vyshe konstanta v teoreme Borelya ne mozhet byt uluchshena chto pokazal Gurvic v 1891 Pust ϕ 1 52 displaystyle phi tfrac 1 sqrt 5 2 zolotoe sechenie Togda dlya lyuboj veshestvennoj konstanty c gt 5 displaystyle c gt sqrt 5 sushestvuet tolko konechnoe chislo racionalnyh chisel p q takih chto ϕ pq lt 1cq2 displaystyle left phi frac p q right lt frac 1 c q 2 Sledovatelno uluchshenie mozhet byt polucheno tolko esli isklyuchit chisla ekvivalentnye ϕ displaystyle phi Bolee tochno Dlya lyubogo racionalnogo chisla a displaystyle alpha kotoroe ne ekvivalentno ϕ displaystyle phi sushestvuet beskonechno mnogo drobej pq displaystyle tfrac p q takih chto a pq lt 18q2 displaystyle left alpha frac p q right lt frac 1 sqrt 8 q 2 Putyom posledovatelnogo isklyucheniya klassov ekvivalentnosti kazhdoe dolzhno isklyuchat chisla ekvivalentnye 2 displaystyle sqrt 2 mozhno podnyat nizhnyuyu granicu Znacheniya kotorye mozhno poluchit v rezultate etogo processa eto chisla Lagranzha yavlyayushiesya chastyu angl Oni shodyatsya k chislu 3 i svyazany s chislami Markova Teorema Hinchina i eyo rasshireniyaPust ps displaystyle psi yavlyaetsya nevozrastayushej funkciej ot polozhitelnyh chisel v polozhitelnye veshestvennye chisla Veshestvennoe chislo x ne obyazatelno algebraicheskoe nazyvaetsya ps displaystyle psi approksimiruemym esli sushestvuet beskonechno mnogo racionalnyh chisel p q takih chto x pq lt ps q q displaystyle left x frac p q right lt frac psi q q Hinchin v 1926 m godu dokazal chto esli posledovatelnost qps q displaystyle sum q psi q rashoditsya to pochti vse veshestvennye chisla v smysle mery Lebega yavlyayutsya ps displaystyle psi approksimiruemymi a v sluchae shodimosti posledovatelnosti pochti lyuboe veshestvennoe chislo ps displaystyle psi approksimiruemym ne yavlyaetsya Daffin i Shaffer dokazali bolee obshuyu teoremu iz kotoroj sleduet rezultat Hinchina i vyskazali gipotezu teper izvestnuyu kak gipoteza Daffina Shaffera Beresnevich i Velani dokazali chto analog gipotezy Daffina Shaffera na mere Hausdorfa ekvivalentna ishodnoj gipoteze Daffina Shaffera kotoraya apriori slabee Razmernost Hausdorfa isklyuchitelnyh mnozhestv Vazhnym primerom funkcii ps displaystyle psi k kotoroj mozhno primenit teoremu Hinchina yavlyaetsya funkciya psc q q c displaystyle psi c q q c gde c gt 1 Dlya etoj funkcii sootvetstvuyushie ryady shodyatsya tak chto po teoreme Hinchina mnozhestvo psc displaystyle psi c approksimiruemyh chisel imeet na veshestvennoj osi nulevuyu meru Lebega Teorema Yarnika Bezikovicha utverzhdaet chto razmernost Hausdorfa etogo mnozhestva ravna 1 c displaystyle 1 c V chastnosti mnozhestvo chisel psc displaystyle psi c approksimiruemyh dlya nekotorogo c gt 1 displaystyle c gt 1 izvestnyh kak ochen horosho approksimiruemye chisla imeet razmernost edinica v to vremya kak mnozhestvo chisel psc displaystyle psi c approksimiruemyh dlya vseh c gt 1 displaystyle c gt 1 izvestnyh kak chisla Liuvillya imeet hausdorfovu razmernost nol Drugim vazhnym primerom yavlyaetsya funkciya psϵ q ϵq 1 displaystyle psi epsilon q epsilon q 1 gde ϵ gt 0 displaystyle epsilon gt 0 Dlya etoj funkcii sootvetstvuyushie posledovatelnosti rashodyatsya i po teoreme Hinchina pochti vse chisla psϵ displaystyle psi epsilon approksimiruemy Inymi slovami eti chisla horosho priblizhaemy to est ne yavlyayutsya ploho priblizhaemymi Takim obrazom analog teoremy Yarnika Bezikovicha dolzhen kasatsya hausdorfovoj razmernosti ploho priblizhaemyh chisel I Yarnik dejstvitelno dokazal ravenstvo edinice hausdorfovovoj razmernosti mnozhestva takih chisel Etot rezultat uluchshil angl pokazavshij chto mnozhestvo ploho priblizhaemyh chisel neszhimaemo v tom smysle chto esli f1 f2 displaystyle f 1 f 2 ldots posledovatelnost bilipshicevyh otobrazhenij to hausdorfova razmernost mnozhestva chisel x dlya kotoryh vse f1 x f2 x displaystyle f 1 x f 2 x ldots ploho priblizhaemy ravna edinice Shmidt obobshil teoremu Yarnika na bolee vysokie razmernosti chto yavlyaetsya sushestvennym dostizheniem poskolku ispolzuyushie apparat nepreryvnyh drobej rassuzhdeniya Yarnika sushestvenno opirayutsya na odnomernost prostranstva Odnorodnoe raspredelenieDrugoj issleduemyj razdel eto teoriya angl Vozmyom posledovatelnost a1 a2 veshestvennyh chisel i rassmotrim ih drobnye chasti To est bolee formalno rassmotrim posledovatelnost v R Z yavlyayushuyusya ciklicheskoj mozhno rassmatrivat kak okruzhnost Dlya lyubogo intervala I na okruzhnosti my rassmatrivaem dolyu elementov vplot do nekotorogo celogo N lezhashih vnutri intervala i sravnivaem eto znachenie s dolej okruzhnosti zanimaemoj intervalom I Odnorodnoe raspredelenie oznachaet chto v predele po mere rosta N dolya popadanij v interval stremitsya k ozhidaemoj velichine Vejl dokazal bazovyj rezultat chto eto ekvivalentno ogranichennosti summ Vejlya obrazovannyh iz posledovatelnosti Eto pokazyvaet chto diofantovy priblizheniya tesno svyazany s obshej zadachej vzaimnogo sokrasheniya v summah Vejlya ocenki ostatochnogo chlena kotorye poyavlyayutsya v analiticheskoj teorii chisel Svyazannaya s ravnomernym raspredeleniem tema tema neravnomernosti raspredelenij imeyushaya kombinatornuyu prirodu Nereshyonnye problemyOstayutsya eshyo prosto formuliruemye no ne reshyonnye problemy diofantovyh priblizhenij naprimer angl i gipoteza ob odinokom begune Neizvestno takzhe sushestvuyut li algebraicheskie chisla s neogranichennymi koefficientami v razlozhenii v nepreryvnuyu drob Poslednie issledovaniyaNa plenarnom zasedanii Mezhdunarodnogo kongressa matematikov v Kioto 1990 Grigorij A Margulis ochertil shirokuyu programmu baziruyushuyusya na ergodicheskoj teorii kotoraya pozvolyaet dokazat teoretiko chislovye rezultaty s ispolzovaniem dinamicheskih i ergodicheskih svojstv dejstvij podgrupp poluprostyh grupp Li Rabota D Ya Klejnboka i G A Margulisa s soavtorami demonstriruet silu etogo novogo podhoda k klassicheskim zadacham diofantovyh priblizhenij Sredi zametnyh dostizhenij dokazatelstvo Margulisom vydvinutoj desyatki let nazad angl s dalnejshimi rasshireniyami Dani i Margulis Eskin Margulis Mozes i dokazatelstvo Klejnbokom i Margulisom gipotez Bejkera i Sprindzhuka o diofantovyh priblizheniyah na mnogoobraziyah Razlichnye obobsheniya vysheupomyanutyh rezultatov Hinchina o metricheskih diofantovyh priblizheniyah byli polucheny s pomoshyu etogo metoda Sm takzheTeorema Devenporta Shmidta Gipoteza Daffina Shaffera Ravnomerno raspredelennaya posledovatelnost angl PrimechaniyaSprindzhuk 1977 s 4 5 Predislovie Hinchin 1978 s 32 Kassels 1961 s 10 Leng 1970 s 19 Hinchin 1978 s 35 Kassels 1961 s 10 17 Hinchin 1978 s 21 22 Bugeaud 2012 s 245 Thue 1909 Siegel 1921 Dyson 1947 Roth 1955 Perron 1913 s Chapter 2 Theorem 15 Hurwitz 1891 s 284 Hardy Wright 1979 s Chapter 10 11 Sm statyu Perrona Perron 1929 Chapter 2 Theorem 23 p 63 Hardy Wright 1979 s 164 Kassels 1961 p 21 Hurwitz 1891 Kassels 1961 s 29 Sm Michel Waldschmidt Introduction to Diophantine methods irrationality and transcendence ot 9 fevralya 2012 na Wayback Machine pp 24 26 Sprindzhuk 1977 s 9 Glava I Duffin Schaeffer 1941 Sprindzhuk 1977 s 23 Beresnevich Velani 2006 Bernik Beresnevich Gotze Kukso 2013 s 24 LiteraturaVictor Beresnevich Sanju Velani A mass transference principle and the Duffin Schaeffer conjecture for Hausdorff measures Annals of Mathematics 2006 T 164 S 971 992 doi 10 4007 annals 2006 164 971 V Bernik V Beresnevich F Gotze O Kukso Distribution of algebraic numbers and metric theory of Diophantine approximation Limit Theorems in Probability Statistics and Number Theory In Honor of Friedrich Gotze Peter Eichelsbacher Guido Elsner Holger Kosters Matthias Lowe Franz Merkl Silke Rolles Heidelberg Springer 2013 T 42 S 23 48 Springer Proceedings in Mathematics amp Statistics doi 10 1007 978 3 642 36068 8 2 Yann Bugeaud Distribution modulo one and Diophantine approximation Cambridge Cambridge University Press 2012 T 193 ISBN 978 0 521 11169 0 Dzh V S Kassels Vvedenie v teoriyu diofantovyh priblizhenij M Izdatelstvo inostrannoj literatury 1961 R J Duffin A C Schaeffer Khintchine s problem in metric diophantine approximation 1941 T 8 S 243 255 ISSN 0012 7094 doi 10 1215 s0012 7094 41 00818 9 Freeman Dyson The approximation to algebraic numbers by rationals Acta Mathematica 1947 T 79 S 225 240 ISSN 0001 5962 doi 10 1007 BF02404697 G H Hardy E M Wright 5th Oxford University Press 1979 ISBN 978 0 19 853170 8 A Hurwitz Ueber die angenaherte Darstellung der Irrationalzahlen durch rationale Bruche nem Mathematische Annalen 1891 Bd 39 H 2 S 279 284 doi 10 1007 BF01206656 A Ya Hinchin Cepnye drobi 4 M Nauka GIFML 1978 D Y Kleinbock G A Margulis Flows on homogeneous spaces and Diophantine approximation on manifolds Ann Math 1998 T 148 vyp 1 S 339 360 doi 10 2307 120997 JSTOR 120997 S Leng Vvedenie v teoriyu diofantovyh priblizhenij M Mir 1970 Biblioteka sbornika Matematika ISBN 0 387 94456 7 G A Margulis A panorama of number theory or the view from Baker s garden Cambridge Cambridge University Press 2002 S 280 310 ISBN 0 521 80799 9 Oskar Perron Die Lehre von den Kettenbruchen nem Leipzig B G Teubner 1913 Oskar Perron Die Lehre von den Kettenbruchen nem 2nd Chelsea 1929 Klaus Friedrich Roth Rational approximations to algebraic numbers 1955 T 2 S 1 20 168 ISSN 0025 5793 doi 10 1112 S0025579300000644 Wolfgang M Schmidt Diophantine approximation 1996 Berlin Heidelberg New York Springer Verlag 1980 T 785 Lecture Notes in Mathematics ISBN 3 540 09762 7 Wolfgang M Schmidt Diophantine approximations and Diophantine equations 2nd Springer Verlag 1996 T 1467 Lecture Notes in Mathematics ISBN 3 540 54058 X Carl Ludwig Siegel Approximation algebraischer Zahlen 1921 T 10 vyp 3 S 173 213 ISSN 0025 5874 doi 10 1007 BF01211608 V G Sprindzhuk Metricheskaya teoriya diofantovyh priblizhenij M GRFML Nauka 1977 A Thue Uber Annaherungswerte algebraischer Zahlen Journal fur die reine und angewandte Mathematik 1909 T 135 S 284 305 ISSN 0075 4102 doi 10 1515 crll 1909 135 284 SsylkiDiophantine Approximation historical survey ot 14 fevralya 2012 na Wayback Machine From Introduction to Diophantine methods course by Michel Waldschmidt Hazewinkel Michiel ed 2001 p d032600 Encyclopedia of Mathematics Springer ISBN 978 1 55608 010 4Dlya uluchsheniya etoj stati zhelatelno Oformit matematicheskie formulyPosle ispravleniya problemy isklyuchite eyo iz spiska Udalite shablon esli ustraneny vse nedostatki Dlya uluchsheniya etoj stati zhelatelno Proverit kachestvo perevoda s inostrannogo yazyka Ispravit statyu soglasno stilisticheskim pravilam Vikipedii Posle ispravleniya problemy isklyuchite eyo iz spiska Udalite shablon esli ustraneny vse nedostatki
Вершина