Поддерживать
www.wikidata.ru-ru.nina.az
Eta statya o chislovoj pryamoj rasshirennoj dvumya znakovymi beskonechnostyami o chislovoj pryamoj rasshirennoj odnoj bezznakovoj beskonechnostyu sm Proektivno rasshirennaya chislovaya pryamaya Rasshirennaya affinno rasshirennaya chislovaya pryamaya mnozhestvo veshestvennyh chisel R displaystyle mathbb R dopolnennoe dvumya beskonechno udalyonnymi tochkami displaystyle infty polozhitelnaya beskonechnost i displaystyle infty otricatelnaya beskonechnost to est R R displaystyle overline mathbb R mathbb R cup infty infty infty infty Sleduet ponimat chto displaystyle infty infty ne yavlyayutsya chislami i imeyut nemnogo inuyu prirodu no dlya nih kak i dlya veshestvennyh chisel tozhe opredeleno otnoshenie poryadka Takzhe sami elementy displaystyle infty i displaystyle infty schitayutsya neravnymi drug drugu Pri etom dlya lyubogo veshestvennogo chisla x R displaystyle x in mathbb R po opredeleniyu polagayut vypolnennymi neravenstva lt x lt displaystyle infty lt x lt infty V nekotoryh didakticheskih materialah termin rasshirennaya chislovaya pryamaya ispolzuetsya po otnosheniyu k chislovoj pryamoj rasshirennoj odnoj beskonechno udalyonnoj tochkoj ne svyazannoj s dejstvitelnymi chislami otnosheniem poryadka poetomu inogda dlya utochneniya pryamuyu s odnoj beskonechnostyu nazyvayut proektivno rasshirennoj a s dvumya affinno rasshirennoj Znak plyus dlya elementa displaystyle infty chasto ne opuskaetsya kak u drugih polozhitelnyh chisel dlya togo chtoby izbezhat putanicy s bezznakovoj beskonechnostyu proektivno rasshirennoj chislovoj pryamoj Odnako inogda znak vsyo zhe opuskaetsya i v takih sluchayah proektivnaya beskonechnost obychno oboznachaetsya kak displaystyle pm infty PoryadokMnozhestvo veshestvennyh chisel R displaystyle mathbb R linejno uporyadochenno po otnosheniyu displaystyle leqslant Odnako v R displaystyle mathbb R net maksimalnogo i minimalnogo elementov Esli rassmatrivat sistemu veshestvennyh chisel kak linejno uporyadochennoe mnozhestvo to eyo rasshirenie do sistemy R displaystyle overline mathbb R kak raz sostoit v dobavlenii maksimalnogo displaystyle infty i minimalnogo displaystyle infty elementov Blagodarya etomu v sisteme R displaystyle overline mathbb R vsyakoe nepustoe mnozhestvo imeet tochnuyu verhnyuyu gran konechnuyu esli mnozhestvo ogranicheno sverhu i displaystyle infty esli ne ogranicheno sverhu Analogichnoe utverzhdenie spravedlivo i dlya tochnoj nizhnej grani Etim obyasnyaetsya udobstvo vvedeniya elementov displaystyle infty i displaystyle infty V rasshirennoj chislovoj pryamoj sushestvuet 3 vida promezhutkov interval poluinterval i otrezok a b x R a lt x lt b displaystyle alpha beta x in overline mathbb R colon alpha lt x lt beta interval a b x R a lt x b displaystyle alpha beta x in overline mathbb R colon alpha lt x leq beta a b x R a x lt b displaystyle alpha beta x in overline mathbb R colon alpha leq x lt beta poluinterval a b x R a x b displaystyle alpha beta x in overline mathbb R colon alpha leq x leq beta otrezok Tak kak beskonechnosti zdes takie zhe ravnopravnye elementy kak i chisla konechnye i beskonechnye promezhutki ne razlichayutsya kak otdelnye vidy promezhutkov TopologiyaOtnoshenie poryadka lt displaystyle lt porozhdaet topologiyu t displaystyle tau na R displaystyle overline mathbb R V topologii t displaystyle tau otkrytymi promezhutkami yavlyayutsya promezhutki vida a b x R a lt x lt b displaystyle alpha beta x in overline mathbb R colon alpha lt x lt beta a x R x gt a displaystyle alpha infty x in overline mathbb R colon x gt alpha b x R x lt b displaystyle infty beta x in overline mathbb R colon x lt beta x R displaystyle infty infty x in overline mathbb R gde a b R displaystyle alpha beta in overline mathbb R Otkrytye mnozhestva zhe zadayutsya kak vsevozmozhnye obedineniya otkrytyh promezhutkov Okrestnosti Okrestnostyu U a displaystyle U a tochki a R displaystyle a in overline mathbb R nazyvaetsya vsyakoe otkrytoe mnozhestvo soderzhashee etu tochku I kak sleduet iz opredeleniya otkrytyh mnozhestv topologii t displaystyle tau vsyakaya okrestnost tochki a displaystyle a vklyuchaet odin iz otkrytyh promezhutkov soderzhashij a displaystyle a V kursah matematicheskogo analiza obychno vvodyat bolee chastnoe ponyatie e displaystyle varepsilon okrestnosti Ue a displaystyle U varepsilon a tochki rasshirennoj chislovoj pryamoj e gt 0 displaystyle varepsilon gt 0 V sluchae a R displaystyle a in mathbb R to est kogda a displaystyle a yavlyaetsya chislom e displaystyle varepsilon okrestnostyu a displaystyle a nazyvaetsya mnozhestvo Ue a def a e a e displaystyle U varepsilon a overset mathrm def a varepsilon a varepsilon Esli zhe a displaystyle a infty to Ue def 1e displaystyle U varepsilon infty overset mathrm def left frac 1 varepsilon infty right a esli a displaystyle a infty to Ue def 1e displaystyle U varepsilon infty overset mathrm def left infty frac 1 varepsilon right Ponyatie e displaystyle varepsilon okrestnostej dlya beskonechnyh chisel opredeleno takim obrazom chto vo vseh sluchayah kogda a displaystyle a yavlyaetsya veshestvennym chislom ili odnoj iz beskonechnostej pri umenshenii chisla e displaystyle varepsilon sootvetstvuyushie okrestnosti umenshayutsya 0 lt e1 lt e2 Ue1 a Ue2 a displaystyle 0 lt varepsilon 1 lt varepsilon 2 Rightarrow U varepsilon 1 a subset U varepsilon 2 a Prokolotye okrestnosti i e displaystyle varepsilon okrestnosti opredelyayutsya sootvetstvenno kak okrestnost i e displaystyle varepsilon okrestnost iz kotoryh udalili samu tochku Predely Vo mnogih kursah matanaliza chasto predely pri stremleniya k plyus ili minus beskonechnosti opredelyayutsya otdelno Takzhe chasto otdelno opredelyayutsya ravenstva predelov plyus i minus beskonechnosti V R displaystyle overline mathbb R vse eti situacii ukladyvayutsya v edinoe opredelenie predela kotoroe sootvetstvuet obshetopologicheskomu opredeleniyu predela Pust f X R displaystyle f colon X to overline mathbb R gde X R displaystyle X subset overline mathbb R V chastnosti f displaystyle f mozhet byt veshestvennoj funkciej veshestvennogo peremennogo Pust x0 a R displaystyle x 0 a in overline mathbb R Togda limx x0f x a def e gt 0 d gt 0 x X x Ud x0 f x Ue a displaystyle lim x to x 0 f x a overset mathrm def iff forall varepsilon gt 0 exists delta gt 0 forall x in X x in U delta x 0 Rightarrow f x in U varepsilon a Pri etom stremlenie k beskonechnosti s obeih storon i ravenstvo predela bezznakovoj beskonechnosti etim opredeleniem ne ohvatyvayutsya Eti slucha tozhe mogut byt ohvacheny obshetopologicheskim opredeleniem predela no uzhe v drugoj strukture a imenno v proektivno rasshirennoj chislovoj pryamoj Nesmotrya na to chto affinno i proektivno rasshirennye chislovye pryamye raznye struktury predely v nih svyazany mezhdu soboj Esli predel v R displaystyle overline mathbb R raven odnoj iz beskonechnostej to v R displaystyle widehat mathbb R on takzhe raven beskonechnosti Naoborot eto ne rabotaet esli predel v R displaystyle widehat mathbb R raven beskonechnosti eto eshyo ne znachit chto v R displaystyle overline mathbb R on budet raven odnoj iz beskonechnostej Primer etomu vsyo tot zhe limx 01x displaystyle lim x to 0 frac 1 x v R displaystyle widehat mathbb R raven beskonechnosti a v R displaystyle overline mathbb R on ne sushestvuet Odnako svyaz mezhdu dvumya strukturami vsyo zhe mozhno sformulirovat v vide utverzhdeniya v obe storony predel v R displaystyle widehat mathbb R raven beskonechnosti raven beskonechnosti togda i tolko togda kogda v R displaystyle overline mathbb R on libo raven odnoj iz beskonechnostej libo ne sushestvuet no pri etom mnozhestvo ego chastichnyh predelov sostoit tolko iz beskonechnostej Kompaktnost R displaystyle overline mathbb R kompaktnoe hausdorfovo prostranstvo Prostranstvo veshestvennyh chisel R displaystyle mathbb R yavlyaetsya polnym no ne yavlyaetsya kompaktnym Takim obrazom rasshirennaya sistema veshestvennyh chisel R displaystyle overline mathbb R mozhet rassmatrivatsya kak dvuhtochechnaya kompaktifikaciya R displaystyle mathbb R Pri etom R displaystyle overline mathbb R okazyvaetsya gomeoformnym otrezku 0 1 displaystyle 0 1 Etot fakt imeet naglyadnuyu geometricheskuyu illyustraciyu Analiticheski gomeoformizm f 0 1 R displaystyle f colon 0 1 to overline mathbb R zadayotsya formuloj f x x 0tg px p2 0 lt x lt 1 x 1 displaystyle f x begin cases infty amp x 0 operatorname tg left pi x dfrac pi 2 right amp 0 lt x lt 1 infty amp x 1 end cases V R displaystyle overline mathbb R teorema Bolcano Vejershtrassa vypolnyaetsya dlya lyuboj posledovatelnosti a ne tolko dlya ogranichennoj Eto znachit chto u lyuboj posledovatelnosti v R displaystyle overline mathbb R sushestvuet shodyashayasya v R displaystyle overline mathbb R podposledovatelnost Takim obrazom R displaystyle overline mathbb R sekvencialno kompaktno OperaciiDlya veshestvennyh chisel i elementov displaystyle pm infty opredeleny sleduyushie dejstviya a a a a a a gt 0a a a lt 0a 0 a R a a gt 0 a a lt 0a a gt 1a 0 lt a lt 1a 0 a gt 1a 0 0 a lt 1 a a gt 0 a 0 a lt 0ln displaystyle begin aligned a pm infty pm infty a amp pm infty amp a amp neq pm infty a cdot pm infty pm infty cdot a amp pm infty amp a amp gt 0 a cdot pm infty pm infty cdot a amp mp infty amp a amp lt 0 frac a pm infty amp 0 amp a amp in mathbb R frac pm infty a amp pm infty amp a amp gt 0 frac pm infty a amp mp infty amp a amp lt 0 a infty amp infty amp a amp gt 1 a infty amp infty amp 0 amp lt a lt 1 a infty amp 0 amp a amp gt 1 a infty amp 0 amp 0 amp leq a lt 1 infty a amp infty amp a amp gt 0 infty a amp 0 amp a amp lt 0 operatorname ln infty amp infty end aligned Znachenie vyrazhenij 0 00 displaystyle infty infty 0 times pm infty frac 0 0 1 displaystyle 1 pm infty 0 displaystyle pm infty 0 00 displaystyle 0 0 ne opredeleny Vopreki rasprostranyonnomu mneniyu znachenie vyrazheniya a0 displaystyle frac a 0 gde a 0 displaystyle a neq 0 tozhe ne opredeleno Doopredelenie etogo vyrazhenie odnoj iz beskonechnostej narushit nepreryvnost operacii deleniya Eto mozhno proillyustrirovat na primere funkcii 1x displaystyle frac 1 x Eyo predel v nule sleva raven displaystyle infty a sprava displaystyle infty chto oznachaet chto dvustoronnego predela v etoj tochke net Iz za etogo kak by my ne doopredelili funkciyu v nule ona ostanetsya razryvnoj Chasto vstrechayushayasya zapis a0 displaystyle frac a 0 infty ili a0 displaystyle frac a 0 pm infty otnositsya k principialno drugoj strukture proektivno rasshirennoj chislovoj pryamoj v kotoroj beskonechnost predstavlyaet soboj sovershenno drugoj obekt Algebraicheskie svojstvaSleduyushie ravenstva oznachayut obe chasti libo obe ravny libo obe ne imeyut smysla a b b a displaystyle a b b a a b c a b c displaystyle a b c a b c a b b a displaystyle a cdot b b cdot a a b c a b c displaystyle a cdot b cdot c a cdot b cdot c Sleduyushie ravenstva verny esli ih pravaya chast opredelena a b c a b a c displaystyle a cdot b c a cdot b a cdot c Sleduyushie svojstva verny esli obe chasti pravogo neravenstva imeyut smysl esli a b displaystyle a leq b to a c b c displaystyle a c leq b c esli a b c gt 0 displaystyle a leq b c gt 0 to a c b c displaystyle a cdot c leq b cdot c Sm takzheProektivno rasshirennaya chislovaya pryamayaPrimechaniyaKudryavcev 2003 s 64 Wolfram Kudryavcev 2003 s 75 Rudin 2004 s 24 Kudryavcev 2003 s 65 Kudryavcev 2003 s 66 LiteraturaKudryavcev L D Kurs matematicheskogo analiza 5 e izd M Drofa 2003 T 1 704 s ISBN 5 7107 4119 1 Cantrell D W Affinely Extended Real Numbers angl Wolfram Math World Weisstein E W Data obrasheniya 9 yanvarya 2022 Rudin U Osnovy matematicheskogo analiza Principles of Mathematical Analysis 3 e izd M Lan 2004 320 s ISBN 5 8114 0443 3
Вершина