Поддерживать
www.wikidata.ru-ru.nina.az
Teorema Muavra Laplasa odna iz predelnyh teorem teorii veroyatnostej ustanovlena Laplasom v 1812 godu Esli pri kazhdom iz n displaystyle n nezavisimyh ispytanij veroyatnost poyavleniya nekotorogo sluchajnogo sobytiya E displaystyle E ravna p 0 1 displaystyle p in 0 1 i m displaystyle m chislo ispytanij v kotoryh E displaystyle E fakticheski nastupaet to veroyatnost spravedlivosti neravenstva blizka pri bolshih n displaystyle n k znacheniyu integrala Laplasa S rostom n forma binomialnoj figury raspredeleniya stanovitsya pohozha na plavnuyu krivuyu Gaussa PrimeneniePri rassmotrenii kolichestva m displaystyle m poyavlenij sobytiya A displaystyle A v n displaystyle n ispytaniyah Bernulli chashe vsego nuzhno najti veroyatnost togo chto m displaystyle m zaklyucheno mezhdu nekotorymi znacheniyami a displaystyle a i b displaystyle b Tak kak pri dostatochno bolshih n displaystyle n promezhutok a b displaystyle a b soderzhit bolshoe chislo edinic to neposredstvennoe ispolzovanie binomialnogo raspredeleniya pn m n m n m pmqn m displaystyle p n m frac n m n m p m q n m trebuet gromozdkih vychislenij tak kak nuzhno summirovat bolshoe chislo opredelyonnyh po etoj formule veroyatnostej Poetomu ispolzuyut asimptoticheskoe vyrazhenie dlya binomialnogo raspredeleniya pri uslovii chto p displaystyle p fiksirovano a n displaystyle n rightarrow infty Teorema Muavra Laplasa utverzhdaet chto takim asimptoticheskim vyrazheniem dlya binomialnogo raspredeleniya yavlyaetsya normalnaya funkciya FormulirovkaEsli v sheme Bernulli n displaystyle n stremitsya k beskonechnosti velichina p 0 1 displaystyle p in 0 1 postoyanna a velichina xm m npnpq displaystyle x m frac m np sqrt npq ogranichena ravnomerno po m displaystyle m i n displaystyle n to est a b lt a xm b lt displaystyle exists a b infty lt a leqslant x m leqslant b lt infty to Pn m 12pnpqexp xm22 1 an m displaystyle P n m frac 1 sqrt 2 pi npq exp left frac x m 2 2 right 1 alpha n m gde an m lt cn c const gt 0 displaystyle left alpha n m right lt frac c sqrt n c text const gt 0 Priblizhyonnuyu formulu Pn m 12pnpqexp xm22 displaystyle P n m approx frac 1 sqrt 2 pi npq exp left frac x m 2 2 right rekomenduetsya primenyat pri n gt 100 displaystyle n gt 100 i pri m gt 20 displaystyle m gt 20 DokazatelstvoDlya dokazatelstva teoremy budem ispolzovat formulu Stirlinga iz matematicheskogo analiza s 2pss 1 2e se8s displaystyle s sqrt 2 pi s s 1 2 e s e theta s 1 gde 0 lt 8s lt 1 12s displaystyle 0 lt theta s lt 1 12s Pri bolshih s displaystyle s velichina 8 displaystyle theta ochen mala i zapisannaya v prostom vide s 2pss 1 2e s displaystyle s sqrt 2 pi s s 1 2 e s 2 dayot maluyu otnositelnuyu oshibku bystro stremyashuyusya k nulyu pri s displaystyle s rightarrow infty Nas budut interesovat znacheniya m displaystyle m ne ochen otlichayushiesya ot naiveroyatnejshego Togda pri fiksirovannom p displaystyle p uslovie n displaystyle n rightarrow infty budet takzhe oznachat chto m n m displaystyle m rightarrow infty n m rightarrow infty 3 Poetomu ispolzovanie priblizhyonnoj formuly Stirlinga dlya zameny faktorialov v binomialnom raspredelenii dopustimo i my poluchaem pn m n2pm n m npm m nqn m n m displaystyle p n m approx sqrt frac n 2 pi m n m left frac np m right m left frac nq n m right n m 4 Takzhe ponadobitsya ispolzovanie otkloneniya otnositelnoj chastoty ot naiveroyatnejshego znacheniya xm mn p displaystyle x m frac m n p 5 Togda vyrazhenie 4 priobretaet vid pn m 2pn p xm q xm 1 2 1 xmp n p xm 1 xmq n q xm displaystyle p n m left 2 pi n p x m q x m right 1 2 left 1 frac x m p right n p x m left 1 frac x m q right n q x m 6 Predpolozhim chto xm lt pq displaystyle x m lt pq 7 Vzyav logarifm vtorogo i tretego mnozhitelej ravenstva 6 primenim razlozhenie v ryad Tejlora n p xm ln 1 xmp q xm ln 1 xmq displaystyle n left p x m ln left 1 frac x m p right q x m ln left 1 frac x m q right right n p xm xmp xm22p2 xm33p3 q xm xmq xm22q2 xm33q3 displaystyle n left p x m left frac x m p frac x m 2 2p 2 frac x m 3 3p 3 cdots right q x m left frac x m q frac x m 2 2q 2 frac x m 3 3q 3 cdots right right 8 Raspolagaem chleny etogo razlozheniya po stepenyam xm displaystyle x m n xm22 1p 1q xm36 1p2 1q2 displaystyle n left frac x m 2 2 left frac 1 p frac 1 q right frac x m 3 6 left frac 1 p 2 frac 1 q 2 right cdots right 9 Predpolozhim chto pri n displaystyle n rightarrow infty nxm3 0 displaystyle nx m 3 rightarrow 0 10 Eto uslovie kak uzhe bylo ukazano vyshe oznachaet chto rassmatrivayutsya znacheniya m displaystyle m ne ochen dalyokie ot naiveroyatnejshego Ochevidno chto 10 obespechivaet vypolnenie 7 i 3 Teper prenebregaya vtorym i posleduyushimi chlenami v razlozhenii 6 poluchaem chto logarifm proizvedeniya vtorogo i tretego chlenov proizvedeniya v pravoj chasti 8 raven n2pqxm2 displaystyle frac n 2pq x m 2 11 Otbrasyvaya malye slagaemye v skobkah pervogo mnozhitelya 6 poluchaem pn m 12pnpq exp n2pqxm2 displaystyle p n m approx left frac 1 sqrt 2 pi npq right exp left frac n 2pq x m 2 right 12 Oboznachiv s pqn displaystyle sigma sqrt frac pq n 13 perepisyvaem 12 v vide pn m 1n1s2pexp xm22s2 1nf xm displaystyle p n m approx frac 1 n frac 1 sigma sqrt 2 pi exp left frac x m 2 2 sigma 2 right frac 1 n varphi x m 14 Gde f xm displaystyle varphi x m normalnaya funkciya Poskolku v intervale m m 1 displaystyle m m 1 imeetsya tolko odno celoe chislo m displaystyle m to mozhno skazat chto pn m displaystyle p n m est veroyatnost popadaniya m displaystyle m v interval m m 1 displaystyle m m 1 Iz 5 sleduet chto izmeneniyu m displaystyle m na 1 sootvetstvuet izmenenie xm displaystyle x m na Dx 1n displaystyle Delta x frac 1 n 15 Poetomu veroyatnost popadaniya m displaystyle m v interval m m 1 displaystyle m m 1 ravna veroyatnosti popadaniya xm displaystyle x m v promezhutok xm0 xm0 Dx displaystyle x m0 x m0 Delta x P xm0 xm xm0 Dx f xm Dx displaystyle P x m0 leq x m leq x m0 Delta x varphi x m Delta x 16 Esli n displaystyle n rightarrow infty to Dx 0 displaystyle Delta x rightarrow 0 i ravenstvo 16 pokazyvaet chto normalnaya funkciya f x displaystyle varphi x yavlyaetsya plotnostyu sluchajnoj peremennoj xm displaystyle x m Takim obrazom esli n nx3 0 displaystyle n rightarrow infty nx 3 rightarrow 0 to dlya otkloneniya otnositelnoj chastoty ot naiveroyatnejshego znacheniya spravedliva asimptoticheskaya formula 16 v kotoroj f x displaystyle varphi x normalnaya funkciya s xm 0 displaystyle x m 0 i s2 pqn displaystyle sigma 2 frac pq n Takim obrazom teorema dokazana LiteraturaGmurman V E Teoriya veroyatnostej i matematicheskaya statistika M Vysshee obrazovanie 2005 Shiryaev A N Veroyatnost M Nauka 1989 Chistyakov V P Kurs teorii veroyatnostej M 1982
Вершина