Поддерживать
www.wikidata.ru-ru.nina.az
Ellipticheskie funkcii Yakobi eto nabor osnovnyh ellipticheskih funkcij kompleksnogo peremennogo i vspomogatelnyh teta funkcij kotorye imeyut pryamoe otnoshenie k nekotorym prikladnym zadacham naprimer uravnenie mayatnika Oni takzhe imeyut poleznye analogii s trigonometricheskimi funkciyami kak pokazyvaet sootvetstvuyushee oboznachenie sn displaystyle operatorname mathrm sn dlya sin displaystyle sin Oni ne dayut samyj prostoj sposob razvit obshuyu teoriyu kak zamecheno nedavno eto mozhet byt sdelano na osnove ellipticheskih funkcij Vejershtrassa Ellipticheskie funkcii Yakobi imeyut v osnovnom parallelogramme po dva prostyh polyusa i dva prostyh nulya VvedenieSushestvuet ellipticheskaya funkciya imeyushaya v osnovnom parallelogramme odin polyus vtorogo poryadka i dva prostyh nulya eto ellipticheskaya funkciya Vejershtrassa Vprochem bolee polezny ellipticheskie funkcii Yakobi imeyushie po dva prostyh polyusa i po dva prostyh nulya v kazhdom osnovnom parallelogramme Kazhdaya iz etih funkcij v osnovnom parallelogramme prinimaet lyuboe znachenie v tochnosti dva raza OboznachenieDlya ellipticheskih funkcij mozhno vstretit raznoobraznye oboznacheniya kotorye mogut zaputat sut dela Ellipticheskie funkcii funkcii dvuh peremennyh Pervuyu peremennuyu mozhno dat v terminah amplitudy f displaystyle varphi ili obychno v terminah u displaystyle u dannogo nizhe Vtoruyu peremennuyu mozhno bylo by dat v terminah parametra m displaystyle m ili kak k displaystyle k gde k2 m displaystyle k 2 m ili v terminah ae displaystyle mbox ae gde m sin2 ae displaystyle m sin 2 mbox ae Opredelenie kak obratnye k ellipticheskim integralamPrivedyonnoe vyshe opredelenie v terminah meromorfnyh funkcij abstraktno Sushestvuet bolee prostoe no absolyutno ekvivalentnoe opredelenie zadayushee ellipticheskie funkcii kak obratnye k nepolnomu ellipticheskomu integralu pervogo roda Pust u 0fd81 msin2 8 displaystyle u int limits 0 varphi frac d theta sqrt 1 m sin 2 theta Ellipticheskaya funkciya sn u displaystyle operatorname sn u zadayotsya kak sn u sin f displaystyle operatorname sn u sin varphi i cn u displaystyle operatorname cn u opredelyaetsya cn u cos f displaystyle operatorname cn u cos varphi a dn u 1 msin2 f displaystyle operatorname dn u sqrt 1 m sin 2 varphi Zdes ugol f displaystyle varphi nazyvaetsya amplitudoj dn u D u displaystyle operatorname dn u Delta u nazyvaetsya delta amplitudoj Znachenie m displaystyle m yavlyaetsya svobodnym parametrom kotoryj polagaetsya realnym v diapazone 0 m 1 displaystyle 0 leqslant m leqslant 1 i takim obrazom ellipticheskie funkcii yavlyayutsya funkciyami dvuh argumentov amplitudy f displaystyle varphi i parametra m displaystyle m Ostavshiesya devyat ellipticheskih funkcij legko postroit iz tryoh vysheprivedyonnyh Eto budet sdelano nizhe Zamette chto kogda f p 2 displaystyle varphi pi 2 to u displaystyle u raven K displaystyle K Opredelenie v terminah teta funkcijEkvivalentno ellipticheskie funkcii Yakobi mozhno opredelit v terminah 8 funkcij Esli my opredelim ϑ 0 t displaystyle vartheta 0 tau kak ϑ displaystyle vartheta i ϑ01 0 t ϑ10 0 t ϑ11 0 t displaystyle vartheta 01 0 tau vartheta 10 0 tau vartheta 11 0 tau sootvetstvenno kak ϑ01 ϑ10 ϑ11 displaystyle vartheta 01 vartheta 10 vartheta 11 teta konstanty togda k displaystyle k raven k ϑ10ϑ 2 displaystyle k left frac vartheta 10 vartheta right 2 Polagaya u pϑ2z displaystyle u pi vartheta 2 z poluchim sn u k ϑϑ11 z t ϑ10ϑ01 z t displaystyle operatorname sn u k frac vartheta vartheta 11 z tau vartheta 10 vartheta 01 z tau cn u k ϑ01ϑ10 z t ϑ10ϑ01 z t displaystyle operatorname cn u k frac vartheta 01 vartheta 10 z tau vartheta 10 vartheta 01 z tau dn u k ϑ01ϑ z t ϑϑ01 z t displaystyle operatorname dn u k frac vartheta 01 vartheta z tau vartheta vartheta 01 z tau Poskolku funkcii Yakobi opredelyayutsya v terminah ellipticheskogo modulya k t displaystyle k tau neobhodimo najti obratnye k nim i vyrazit t displaystyle tau v terminah k displaystyle k Nachnyom s dopolnitelnogo modulya k 1 k2 displaystyle k sqrt 1 k 2 Kak funkciya t displaystyle tau zapishem k t ϑ01ϑ 2 displaystyle k tau left frac vartheta 01 vartheta right 2 Vvedyom oboznachenie ℓ 121 k 1 k 12ϑ ϑ01ϑ ϑ01 displaystyle ell frac 1 2 frac 1 sqrt k 1 sqrt k frac 1 2 frac vartheta vartheta 01 vartheta vartheta 01 Opredelim takzhe q displaystyle q kak q exp pit displaystyle q exp pi i tau i razlozhim ℓ displaystyle ell v ryad po stepenyam noma q displaystyle q Poluchim ℓ q q9 q25 1 2q4 2q16 displaystyle ell frac q q 9 q 25 ldots 1 2q 4 2q 16 ldots dayot q ℓ 2ℓ5 15ℓ9 150ℓ13 1707ℓ17 20910ℓ21 268616ℓ25 displaystyle q ell 2 ell 5 15 ell 9 150 ell 13 1707 ell 17 20910 ell 21 268616 ell 25 ldots Poskolku my mozhem rassmotret chastnyj sluchaj kogda mnimaya chast t displaystyle tau bolshe ili ravna 3 2 displaystyle sqrt 3 2 my mozhem skazat chto znachenie q displaystyle q menshe ili ravno exp p3 2 displaystyle exp pi sqrt 3 2 Dlya takih malyh znachenij vysheprivedyonnyj ryad shoditsya ochen bystro i eto pozvolyaet legko najti podhodyashee znachenie dlya q displaystyle q Drugie funkciiIzmeneniem poryadka dvuh bukv v nazvanii funkcij obychno oboznachayut obratnye k tryom funkciyam privedyonnyh vyshe ns u 1 sn u displaystyle operatorname ns u 1 operatorname sn u nc u 1 cn u displaystyle operatorname nc u 1 operatorname cn u nd u 1 dn u displaystyle operatorname nd u 1 operatorname dn u Otnosheniya tryoh glavnyh funkcij oboznachayut pervoj bukvoj chislitelya sleduyushej pered pervoj bukvoj znamenatelya sc u sn u cn u displaystyle operatorname sc u operatorname sn u operatorname cn u sd u sn u dn u displaystyle operatorname sd u operatorname sn u operatorname dn u dc u dn u cn u displaystyle operatorname dc u operatorname dn u operatorname cn u ds u dn u sn u displaystyle operatorname ds u operatorname dn u operatorname sn u cs u cn u sn u displaystyle operatorname cs u operatorname cn u operatorname sn u cd u cn u dn u displaystyle operatorname cd u operatorname cn u operatorname dn u Bolee kratko zapishem pq u pr u qr u displaystyle operatorname pq u frac operatorname pr u operatorname qr u gde vse bukvy p displaystyle operatorname p q displaystyle operatorname q i r displaystyle operatorname r yavlyayutsya lyubymi bukvami s displaystyle operatorname s c displaystyle operatorname c d displaystyle operatorname d n displaystyle operatorname n sleduet pomnit chto ss cc dd nn 1 displaystyle operatorname ss operatorname cc operatorname dd operatorname nn 1 Dopolnitelnye teoremyFunkcii udovletvoryayut dvum algebraicheskim sootnosheniyam cn2 sn2 1 displaystyle operatorname cn 2 operatorname sn 2 1 dn2 k2sn2 1 displaystyle operatorname dn 2 k 2 operatorname sn 2 1 Vidno chto cn displaystyle operatorname cn sn displaystyle operatorname sn dn displaystyle operatorname dn parametrizuet ellipticheskuyu krivuyu kotoraya yavlyaetsya peresecheniem dvuh kvadrik opredelyonnoj vysheupomyanutymi dvumya uravneniyami My teper mozhem opredelit gruppovoj zakon dlya tochek na etoj krivoj s pomoshyu dopolnitelnyh formul dlya funkcij Yakobi cn x y cn x cn y sn x sn y dn x dn y 1 k2sn2 x sn2 y displaystyle operatorname cn x y frac operatorname cn x operatorname cn y operatorname sn x operatorname sn y operatorname dn x operatorname dn y 1 k 2 operatorname sn 2 x operatorname sn 2 y sn x y sn x cn y dn y sn y cn x dn x 1 k2sn2 x sn2 y displaystyle operatorname sn x y frac operatorname sn x operatorname cn y operatorname dn y operatorname sn y operatorname cn x operatorname dn x 1 k 2 operatorname sn 2 x operatorname sn 2 y dn x y dn x dn y k2sn x sn y cn x cn y 1 k2sn2 x sn2 y displaystyle operatorname dn x y frac operatorname dn x operatorname dn y k 2 operatorname sn x operatorname sn y operatorname cn x operatorname cn y 1 k 2 operatorname sn 2 x operatorname sn 2 y Trigonometricheskie i giperbolicheskie funkcii kak chastnyj sluchaj ellipticheskihEsli m 1 displaystyle m 1 tou 0fd81 sin2 8 ln 1cos f tg f displaystyle u int limits 0 varphi frac d theta sqrt 1 sin 2 theta operatorname ln left frac 1 cos varphi operatorname tg varphi right Otsyuda sin f snu e2u 1e2u 1 thu displaystyle sin varphi operatorname sn u frac e 2u 1 e 2u 1 operatorname th u Otsyuda cnu 1 sn2u 1chu displaystyle operatorname cn u sqrt 1 operatorname sn 2 u frac 1 operatorname ch u i dnu 1 sn2u 1chu displaystyle operatorname dn u sqrt 1 operatorname sn 2 u frac 1 operatorname ch u Takim obrazom pri m 1 displaystyle m 1 ellipticheskie funkcii vyrozhdayutsya v giperbolicheskie Esli m 0 displaystyle m 0 tou 0fd8 f displaystyle u int limits 0 varphi d theta varphi Otsyuda sin f sinu snu displaystyle sin varphi sin u operatorname sn u a takzhe cnu cosu displaystyle operatorname cn u cos u dnu 1 displaystyle operatorname dn u 1 Takim obrazom pri m 0 displaystyle m 0 ellipticheskie funkcii vyrozhdayutsya v trigonometricheskie Sootnoshenie mezhdu kvadratami funkcijDlya kvadratov etih funkcij verny sleduyushie sootnosheniya dn2 u m1 mcn2 u msn2 u m displaystyle operatorname dn 2 u m 1 m operatorname cn 2 u m operatorname sn 2 u m m1nd2 u m1 mm1sd2 u mcd2 u m displaystyle m 1 operatorname nd 2 u m 1 mm 1 operatorname sd 2 u m operatorname cd 2 u m m1sc2 u m1 m1nc2 u dc2 u m displaystyle m 1 operatorname sc 2 u m 1 m 1 operatorname nc 2 u operatorname dc 2 u m cs2 u m1 ds2 u ns2 u m displaystyle operatorname cs 2 u m 1 operatorname ds 2 u operatorname ns 2 u m gde m m1 1 displaystyle m m 1 1 i m k2 displaystyle m k 2 Dopolnitelnye ravenstva dlya kvadratov mozhno poluchit esli zametit chto pq2 qp2 1 displaystyle operatorname pq 2 cdot operatorname qp 2 1 a takzhe pq pr qr displaystyle operatorname pq operatorname pr operatorname qr gde p displaystyle operatorname p q displaystyle operatorname q r displaystyle operatorname r lyubye bukvy s displaystyle operatorname s c displaystyle operatorname c d displaystyle operatorname d n displaystyle operatorname n i ss cc dd nn 1 displaystyle operatorname ss operatorname cc operatorname dd operatorname nn 1 NomPust raven q exp pK K displaystyle q exp pi K K i pust argument v pu 2K displaystyle v pi u 2K Togda funkcii mozhno predstavit v vide sn u 2pKm n 0 qn 1 21 q2n 1sin 2n 1 v displaystyle operatorname sn u frac 2 pi K sqrt m sum n 0 infty frac q n 1 2 1 q 2n 1 sin 2n 1 v cn u 2pKm n 0 qn 1 21 q2n 1cos 2n 1 v displaystyle operatorname cn u frac 2 pi K sqrt m sum n 0 infty frac q n 1 2 1 q 2n 1 cos 2n 1 v dn u p2K 2pK n 1 qn1 q2ncos 2nv displaystyle operatorname dn u frac pi 2K frac 2 pi K sum n 1 infty frac q n 1 q 2n cos 2nv Resheniya nelinejnyh obyknovennyh differencialnyh uravnenijProizvodnye tryoh osnovnyh ellipticheskih funkcij Yakobi zapisyvayutsya v vide ddzsn z k cn z k dn z k displaystyle frac mathrm d mathrm d z mathrm sn z k mathrm cn z k mathrm dn z k ddzcn z k sn z k dn z k displaystyle frac mathrm d mathrm d z mathrm cn z k mathrm sn z k mathrm dn z k ddzdn z k k2sn z k cn z k displaystyle frac mathrm d mathrm d z mathrm dn z k k 2 mathrm sn z k mathrm cn z k Ispolzuya teoremu formulirovka kotoroj privedena vyshe poluchim dlya zadannogo k displaystyle k 0 lt k lt 1 displaystyle 0 lt k lt 1 uravneniya resheniyami kotoryh yavlyayutsya ellipticheskie funkcii Yakobi sn x k displaystyle mathrm sn x k yavlyaetsya resheniem uravneniya d2ydx2 1 k2 y 2k2y3 0 displaystyle frac mathrm d 2 y mathrm d x 2 1 k 2 y 2k 2 y 3 0 i dydx 2 1 y2 1 k2y2 displaystyle left frac mathrm d y mathrm d x right 2 1 y 2 1 k 2 y 2 cn x k displaystyle mathrm cn x k yavlyaetsya resheniem uravneniya d2ydx2 1 2k2 y 2k2y3 0 displaystyle frac mathrm d 2 y mathrm d x 2 1 2k 2 y 2k 2 y 3 0 i dydx 2 1 y2 1 k2 k2y2 displaystyle left frac mathrm d y mathrm d x right 2 1 y 2 1 k 2 k 2 y 2 dn x k displaystyle mathrm dn x k yavlyaetsya resheniem uravneniya d2ydx2 2 k2 y 2y3 0 displaystyle frac mathrm d 2 y mathrm d x 2 2 k 2 y 2y 3 0 i dydx 2 y2 1 1 k2 y2 displaystyle left frac mathrm d y mathrm d x right 2 y 2 1 1 k 2 y 2 SsylkiWeisstein Eric W Jacobi Elliptic Functions angl na sajte Wolfram MathWorld Ellipticheskie funkcii nedostupnaya ssylka Procedury dlya MatlabLiteraturaBobylyov D K Ellipticheskie integraly i funkcii Enciklopedicheskij slovar Brokgauza i Efrona v 86 t 82 t i 4 dop SPb 1890 1907 Abramowitz Milton Stegun Irene A eds Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables angl New York Dover 1972 See Chapter 16Ahiezer N I Elementy teorii ellipticheskih funkcij neopr M Nauka 1970 Vatson Dzh N Uitteker E T Kurs sovremennogo analiza Chast 2 Transcendentnye funkcii rus M Mir 1963 ili Moskva URSS 2010
Вершина