Поддерживать
www.wikidata.ru-ru.nina.az
DNK mikrochip ili DNK chip angl DNA microarray tehnologiya ispolzuemaya v molekulyarnoj biologii i medicine DNK mikrochip predstavlyaet soboj mnozhestvo nebolshih odnocepochechnyh molekul DNK zondov kotorye kovalentno prishity k tvyordomu osnovaniyu Kazhdyj takoj zond imeet strogo opredelyonnuyu posledovatelnost nukleotidov i mesto na mikrochipe Odinakovye zondy raspolagayutsya vmeste obrazuya sajt mikrochipa Mezhdu sajtom i posledovatelnostyu DNK zonda est vzaimno odnoznachnoe sootvetstvie DNK mikrochipy ispolzuyutsya dlya opredeleniya DNK ili RNK obychno posle obratnoj transkripcii kotorye mogut byt kak belok kodiruyushimi tak i ne kodirovat belki Izmerenie gennoj ekspressii posredstvom kDNK nazyvaetsya profilem ekspressii ili ekspressionnym analizom Na sovremennyh mikrochipah mozhno polnostyu raspolozhit celyj genom kazhdyj izvestnyj gen kotorogo budet yavlyatsya zondom Genom myshi sprava i cheloveka sleva na DNK mikrochipahPrincip metodaKomplementarnye DNK obrazuyut dupleks kotoryj pri nepolnoj komplementarnosti poluchaetsya znachitelno slabee i mozhet byt smyt s chipa Horoshij dupleks budet davat signal v dannom sluchae v vide sveta V osnove raboty DNK mikrochipov lezhit yavlenie gibridizacii Pri nalichii nebolshih kolichestv DNK issleduemogo obrazca osushestvlyayut amplifikaciyu Dlya RNK snachala osushestvlyaetsya obratnaya transkripciya chto vprochem neobyazatelno sushestvuyut chipy rabotayushie kak s DNK tak i s RNK Proverka obrazcov DNK RNK zaklyuchaetsya v mechenii obrazcov razlichnymi fluorescentnymi metkami dlya posleduyushego obnaruzheniya i nanesenii obrazcov na mikrochip DNK mikrochip s nanesyonnym na nego obrazcom inkubiruyut nekotoroe vremya chtoby proizoshla gibridizaciya komplementarnyh odnocepochechnyh molekul posle chego chip promyvayut Vse nekomplementarnye DNK RNK obrazca smyvayutsya s chipa Posle etogo proizvodyat skanirovanie mikrochipa pri pomoshi lazera kotoryj vyzyvaet fluorescenciyu mechennyh molekul obrazca Podklyuchyonnyj k kompyuteru mikroskop ocenivaet fluorescenciyu kazhdogo sajta DNK mikrochipa a sledovatelno i ustanavlivaet posledovatelnosti gibridizovannyh DNK chto pozvolyaet ustanovit posledovatelnost DNK RNK iz obrazca IstoriyaTehnologiya DNK mikrochipov beryot nachalo ot Sauzern blottinga metodiki v kotoroj fragmentirovannuyu DNK perenosyat na podhodyashij nositel i zatem s pomoshyu zonda s izvestnoj nukleotidnoj posledovatelnostyu opredelyayut soderzhanie celevoj posledovatelnosti v obrazce Vpervye nabor razlichnyh DNK obedinyonnyh v chip byl ispolzovan v 1987 godu dlya opredeleniya osobennostej regulyacii ekspressii genov interferonami Rannie DNK mikrochipy byli sdelany putyom raskapyvaniya mikrokolichestv kDNK na Ispolzovanie miniatyurnyh chipov dlya opredeleniya osobennostej ekspressii genov bylo osushestvleno v 1995 godu i polnyj eukarioticheskij genom Saccharomyces cerevisiae byl razmeshyon na mikrochipe v 1997 godu Sborka DNK mikrochipov source source source source Pechat DNK chipa vypolnyaemaya robotom Amplificirovannye fragmenty DNK pri pomoshi mikromanipulyatora nanosyat na kremnievye ili steklyannye plastiny kovalentno zakreplyaya zondy V 1991 1993 godah byl predlozhen drugoj podhod v osnove kotorogo lezhala tehnologiya fotolitografii ispolzuemaya v poluprovodnikovoj industrii Pozzhe v 1997 godu byl zapatentovan eshyo odin metod elektrofokusirovanie Fotolitografiya Sborka nachinaetsya s naneseniya na steklyannuyu plastinku razmerom 12 8 12 8 mm specialnogo zashitnogo fotochuvstvitelnogo sloya kotoryj delaet samu plastinku inertnoj Tolko te mesta gde zashitnyj sloj budet osveshyon sposobny prisoedinit dezoksiribonukleotidy A T G C Posle vozdejstviya sveta na plastinku nanositsya rastvor odnogo iz osnovanij Vse ostalnye mesta zashisheny specialnoj fotolitograficheskoj maskoj takim obrazom dezoksirubonukleotidy kovalentno prisoedinyayutsya k plastinke v tochno nuzhnyh mestah posle chego vse chto ne smoglo svyazatsya smyvaetsya Sami nukleotidy himicheski modificirovany tak chtoby oni mogli svyazat drugoj nukleotid tolko pri vozdejstvii sveta Mnogokratno povtoryaya cikly maski osvesheniya nanesenie nukleotida promyvaniya stolko raz skolko neobhodimo i postoyanno menyaya maski mozhno dobitsya sozdaniya unikalnyh posledovatelnostej Razlichnye maski razrabatyvayut dlya sozdaniya chipa v sootvetstvii s trebovaniyami k poluchaemym zondam Cepi odinakovyh odnocepochnyh DNK organizovannye v kvadrat 90h90 mkm rastut na poverhnosti plastiny nukleotid za nukleotidom Kazhdyj kvadrat v itoge soderzhit milliardy identichnyh zondov Sejchas fotolitografiyu ispolzuyut dlya sozdaniya otnositelno korotkih zondov dlinoj ne bolee 100 nukleotidov Pri etom kolichestvo masok smenyaemyh za vremya sborki takogo chipa sopostavimo s dlinoj zondov tak dlya sborki zondov dlinoj 18 25 nukleotidov na chipe potrebuetsya poryadka 40 masok Na praktike bolshoe chislo identichnyh DNK mikrochipov izgotavlivayutsya vmeste na bolshoj steklyannoj podlozhke Elektrofokusirovanie Sborka takogo roda mikrochipov trebuet osobenno slozhnyh podlozhek predstavlyayushih soboj po suti elektronnye chipy so mnozhestvom vyhodov kazhdyj iz kotoryh kontroliruet napryazhenie na opredelyonnom meste plastinki V otlichie ot fotolitografii gde zondy sobirayutsya osnovanie za osnovaniem zdes uzhe gotovye odnocepochechnye oligonukleotidy dostavlyayutsya k nuzhnym mestam plastinki pod dejstviem elektricheskogo polya V nuzhnom meste plastinki pri pomoshi sootvetstvuyushego vyhoda mikrochipa sozdaetsya polozhitelnoe napryazhenie Otricatelno zaryazhennaya odnocepochechnaya DNK dvizhetsya k sozdannomu polozhitelnomu zaryadu i prikreplyaetsya v nuzhnom meste Posle etogo aktiviruetsya sleduyushij vyhod mikrochipa davaya polozhitelnyj zaryad v drugom meste plastinki kuda i napravlyaetsya sleduyushij zond Plotnost raspolozheniya DNK na takogo roda roda chipah gorazdo menshe chem na chipah poluchennyh pri pomoshi fotolitografii EksperimentSushestvuet tri bazovyh tipa mikrochipov dlya analiza gennoj ekspressii GEM microarray dlya sravnitelnoj genomnoj gibridizacii MCGH i dlya obnaruzheniya edinichnyh nukleotidnyh polimorfizmov SNPM Bazovyj protokol mozhet byt predstavlen v sleduyushem vide 1 Vydelenie DNK RNK Na etom etape vydelyaetsya libo mRNK GEM libo fragmenty genomnoj DNK MCGH SNPM iz interesuyushih obrazcov Sejchas eto legko osushestvlyaetsya specialnymi kommercheskimi naborami 2 Mechenie DNK RNK Etot process nachinaetsya s obratnoj transkripcii esli neobhodimo Zatem proizvodyat amplifikaciyu celevogo fragmenta pri pomoshi polimeraznoj cepnoj reakcii V processe PCR v sostav fragmentov DNK vklyuchayutsya nukleotidy s fluorescentnymi metkami 3 Gibridizaciya Zdes fluorescentno mechennye amplificirovannye obrazcy ispolzuyutsya kak misheni dlya poiska na mikrochipe komplementarnyh cepej to est sposobnyh obrazovyvat prochnye dvojnye cepi dupleksy po pravilu komplementarnosti Kak primer komplementarnye posledovatelnosti 5 GCATGCAT 3 i 3 CGTACGTA 5 Tak kak odna iz cepej obrazuemogo dupleksa mechenaya to signal ot takogo dupleksa mozhno zaregistrirovat 4 Promyvka Kak tolko zakanchivaetsya gibridizaciya chip vynimayut iz rastvora soderzhashego obrazcy mechenoj DNK Sam chip potom tshatelno promyvaetsya po opredelyonnym metodikam ispolzuya razlichnye bufernye smesi centrifugirovanie i tak dalee 5 Skanirovanie Etot process predpolagaet ispolzovanie opticheskih skaniruyushih proborov sposobnyh detektirovat fotony s tochno opredelyonnoj dlinnoj volny Kazhdyj sajt chipa osveshaetsya puchkom sveta opredelyonnoj dliny volny chto aktiviruet fluorescentuyu metku Prosvechivanie mikrochipa proizvodyat argonovymi lazerami Aktivirovannaya fluorescentnaya metka ispuskaet foton chut bolshej dliny volny kotoryj registriruet pribor Chem bolshe fotonov pri odnom zasvete ulovit pribor tem vyshe intensivnost svecheniya dannoj tochki a znachit tam bolshoe chislo obrazovavshihsya dupleksov 6 Analiz dannyh Dannye massiv znachenij intensivnosti svecheniya kazhdogo konkretnogo sajta mikrochipa Ispolzuya matematicheskie metody sravneniya mozhno dostoverno ustanovit sajty chipa gde proizoshla gibridizaciya a znachit i uznat posledovatelnost DNK RNK iz obrazca Oblasti primeneniyaAnaliz ekspressii genov Eto samoe chastoe primenenie DNK mikrochipov RNK vydelennaya iz kultury kletok podvergaetsya obratnoj transkripcii v rezultate kotoroj poluchaetsya mechennaya kDNK Inogda trebuetsya eshyo odin etap transkripcii s kDNK dlya chipov rabotayushih s RNK pri kotorom sozdaetsya mechennaya kRNK Sushestvuet neskolko razlichnyh sposobov vnesti metki v celevuyu molekulu vklyuchenie fluorescentno mechennyh nukleotidov v processe sinteza kDNK ili kRNK ispolzovanie biotin modificirovannyh nukleotidov kotorye potom okrashivayutsya fluorescentno mechennym streptavidinom ispolzovanie vo vremya sinteza modificirovannyh nukleotidov na kotorye zatem mozhno dobavit fluorescentnuyu metku Mechennaya takim obrazom DNK ili RNK gibridizuetsya na mikrochipe posle chego smyvaetsya V kazhdoj tochke chipa detektiruetsya fluorescentnyj signal V sluchae s biotinilirovannymi obrazcami DNK mikrochip posle gibridizacii okrashivaetsya streptavidinom soderzhashim fluorescentnye metki Fluorescenciya vozbuzhdaetsya svetom lazera i registriruetsya kak pravilo skaniruyushim konfokalnom mikroskopom Analiz svyazyvaniya transkripcionnyh faktorov Mikrochipy takzhe ispolzuyutsya vmeste s immunoprecipitaciej hromatina dlya opredeleniya sajtov svyazyvaniya transkripcionnyh faktorov TF V ekstrakt kletochnoj DNK dobavlyayut formaldegid chto vedet k obrazovaniyu kovalentnyh sshivok mezhdu DNK i belkami Posle chego DNK fragmentiruetsya Nuzhnyj TF vydelyaetsya iz smesi pri pomoshi affinnoj hromatografii s ispolzovaniem antitel ili tegov kotorye vstavlyayutsya v dannyj TF genno inzhenernymi metodami zaranee Posle ochistki DNK osvobozhdaetsya ot TF amplificiruetsya fluorescentno metitsya i ispolzuetsya dlya gibridizacii na mikrochipe Takaya tehnika shiroko izvestna kak ChIP chip ili immunoprecipitaciya hromatina na mikrochipe no u nee est ogranicheniya v svyazi s tem chto TF mogut svyazyvatsya daleko ot reguliruemogo imi gena Genotipirovanie DNK mikrochipy shiroko ispolzuyutsya dlya vyyavleniya odnonukleotidnyh polimorfizmov SNP Sushestvuet neskolko razlichnyh podhodov Allelnaya diskriminaciya Na mikrochipah raspolagayutsya korotkie zondy 25 nukleotidov dlya mikrochipov Affymetrix soderzhashie vse varianty SNP v centre tak kak eta poziciya naibolee silno vliyaet na kachestvo gibridizacii Fragmentirovannaya amplificirovannaya fluorescentno mechennaya DNK obrazca nanositsya na mikrochip gde proishodit gibridizaciya obrazca i zonda V mestah polnoj komplementarnosti molekul registriruetsya silnyj signal Golden Gate analiz V osnove etogo metoda lezhit polimeraznaya cepnaya reakciya V rastvor genomnoj DNK pomeshayutsya molekuly komplementarnye genomnoj DNK i na 3 konce soderzhashie razlichnye modifikacii SNP a na 5 konce razlichnye prajmery dlya posleduyushego provedeniya PCR krome togo dobavlyaetsya i komplementarnaya drugoj cepi genomnoj DNK molekula s drugoj storony ot SNP soderzhashaya na 5 konce eshyo odin prajmer dlya PCR Polimeraza budet osushestvlyat sintez tolko s togo prajmera 3 konec kotorogo sootvetstvuet SNP V itoge v zavisimosti ot togo s kakogo prajmera s vidoizmenennym 3 koncom proizojdyot PCR takoj SNP i nablyudaetsya v obrazce Rasshirenie prajmerov Zdes zondy podobrany tak chto pokryvayut ves uchastok DNK pryamo do SNP ne vklyuchaya polimorfizm Fragmentirovannaya genomnaya DNK gibridizuetsya s takim chipom posle chego v rastvor dobavlyaetsya polimeraza i fluorescentno mechennye nukleotidy s 4 razlichnymi metkami na 3 konce Podobnye nukleotidy mogut prisoedinitsya polimerazoj k imeyushejsya cepi no potom prisoedinit k sebe sleduyushij nukleotid ne mogut V itoge zondy rasshiryayutsya na odin nukleotid kotoryj i sootvetstvuet SNP Ocenka krajnego nukleotida Etot metod shozh s metodom rasshireniya prajmerov s tem otlichiem chto zondy raspolagayutsya ne na ploskoj podlozhke a na mnozhestve melkih sharikov SNP takzhe raspoznaetsya po cvetu metki edinstvennogo dostroennogo nukleotida OgranicheniyaNesmotrya na dostoinstva DNK mikrochipov u nih est i ogranicheniya v primenenii Predpolagaetsya chto intensivnost signala svecheniya zaregistrirovannaya v konkretnom sajte mikrochipa linejno zavisit ot kolichestva DNK kotoroe proshlo gibridizaciyu chto ne vsegda tak iz za kinetiki gibridizacii uroven signala poluchennyj v dannoj tochke ne yavlyaetsya linejnoj funkciej ot koncentracii dannoj DNK v obrazce Takim obrazom tochno ocenivat kolichestvo DNK v obrazce mozhno lish v opredelyonnom diapazone iznachalnyh koncentracij DNK kotorye vsyo zhe mogut obespechit linejnuyu zavisimost Ocenka otnositelno iznachalno bolshih ili malyh koncentracij DNK obrazca budet netochnoj V slozhnyh genomah eukariot osobenno mlekopitayushih vstrechaetsya mnozhestvo gomologichnyh genov posledovatelnosti kotoryh ochen shodny chto nakladyvaet dopolnitelnye usloviya na dizajn zondov dlya mikrochipov Zond skonstruirovannyj dlya odnogo gena A mozhet takzhe pojmat na sebya eshyo i geny B C D okazavshiesya gomologichnymi genu A chto iskazit itogovuyu kartinu Eshyo odno ogranichenie svyazano s obemom bazy izvestnyh genov Nevozmozhen sintez zonda sootvetstvuyushego neizvestnomu genu i nikakie vzaimodejstviya takih genov ne mogut byt obnaruzheny Eta problema osobenno aktualna dlya prokariot tak kak genomy dazhe blizkorodstvennyh organizmov mogut znachitelno otlichatsya Naprimer u vida bakterij genomy razlichnyh shtammov mogut razlichatsya na 20 genov i sledovatelno mikrochipy skonstruirovannye pod odin shtamm ne smogut obnaruzhit drugoj Sm takzheTehnologiya SlipChip Belkovye mikrochipyPrimechaniyaJavier Garaizar Aitor Rementeria Steffen Porwollik DNA microarray technology a new tool for the epidemiological typing of bacterial pathogens FEMS immunology and medical microbiology 2006 07 01 T 47 vyp 2 S 178 189 ISSN 0928 8244 doi 10 1111 j 1574 695X 2006 00081 x 20 aprelya 2017 goda M Bednar DNA microarray technology and application Medical Science Monitor International Medical Journal of Experimental and Clinical Research 2000 07 01 T 6 vyp 4 S 796 800 ISSN 1234 1010 3 aprelya 2017 goda Lashkari D A DeRisi J L McCusker J H Namath A F Gentile C Hwang S Y Brown P O Davis R W Yeast microarrays for genome wide parallel genetic and gene expression analysis angl Proceedings of the National Academy of Sciences of the United States of America journal 1997 Vol 94 P 13057 13062 doi 10 1073 pnas 94 24 13057 PMID 9371799 B Alberts Molekulyarnaya biologiya kletki v 3 tomah 2013 S 881 885 2821 s ISBN 978 0 8153 4111 6 ISBN 978 5 4344 0137 1 Kulesh D A Clive D R Zarlenga D S Greene J J Identification of interferon modulated proliferation related cDNA sequences angl Proceedings of the National Academy of Sciences of the United States of America journal 1987 Vol 84 P 8453 8457 doi 10 1073 pnas 84 23 8453 PMID 2446323 Schena M Shalon D Davis R W Brown P O Quantitative monitoring of gene expression patterns with a complementary DNA microarray angl Science journal 1995 Vol 270 P 467 470 doi 10 1126 science 270 5235 467 PMID 7569999 G McGall J Labadie P Brock G Wallraff T Nguyen Light directed synthesis of high density oligonucleotide arrays using semiconductor photoresists angl Proceedings of the National Academy of Sciences United States National Academy of Sciences 1996 11 26 Vol 93 iss 24 P 13555 13560 ISSN 0027 8424 20 aprelya 2017 goda C F Edman D E Raymond D J Wu E Tu R G Sosnowski Electric field directed nucleic acid hybridization on microchips Nucleic Acids Research 1997 12 15 T 25 vyp 24 S 4907 4914 ISSN 0305 1048 20 aprelya 2017 goda National Center for Biotechnology Information MICROARRAYS CHIPPING AWAY AT THE MYSTERIES OF SCIENCE AND MEDICINE neopr Data obrasheniya 12 aprelya 2017 13 aprelya 2017 goda Dan Tulpan Recent patents and challenges on DNA microarray probe design technologies Recent patents on DNA amp gene sequences 2010 11 01 T 4 vyp 3 S 210 217 ISSN 2212 3431 18 aprelya 2017 goda Siun Chee Tan Beow Chin Yiap DNA RNA and protein extraction the past and the present Journal of Biomedicine amp Biotechnology 2009 01 01 T 2009 S 574398 ISSN 1110 7251 doi 10 1155 2009 574398 24 aprelya 2017 goda Hagar Zohar Susan J Muller Labeling DNA for single molecule experiments methods of labeling internal specific sequences on double stranded DNA Nanoscale 2011 08 01 T 3 vyp 8 S 3027 3039 ISSN 2040 3372 doi 10 1039 c1nr10280j 24 aprelya 2017 goda Marco Wiltgen Gernot P Tilz DNA microarray analysis principles and clinical impact Hematology Amsterdam Netherlands 2007 08 01 T 12 vyp 4 S 271 287 ISSN 1607 8454 doi 10 1080 10245330701283967 24 aprelya 2017 goda pubmeddev Comparison of fluorescent tag DNA labeling methods used for expression PubMed NCBI angl www ncbi nlm nih gov Data obrasheniya 13 aprelya 2017 Roger Bumgarner Overview of DNA microarrays types applications and their future angl Current Protocols in Molecular Biology 2013 01 01 Vol Chapter 22 P Unit 22 1 ISSN 1934 3647 doi 10 1002 0471142727 mb2201s101 19 aprelya 2017 goda M J Solomon P L Larsen A Varshavsky Mapping protein DNA interactions in vivo with formaldehyde evidence that histone H4 is retained on a highly transcribed gene angl Cell Cell Press 1988 06 17 Vol 53 iss 6 P 937 947 ISSN 0092 8674 Christine E Horak Michael Snyder ChIP chip a genomic approach for identifying transcription factor binding sites Methods in Enzymology 2002 01 01 T 350 S 469 483 ISSN 0076 6879 Michael J Buck Jason D Lieb ChIP chip considerations for the design analysis and application of genome wide chromatin immunoprecipitation experiments Genomics Academic Press 2004 03 01 T 83 vyp 3 S 349 360 ISSN 0888 7543 D G Wang J B Fan C J Siao A Berno P Young Large scale identification mapping and genotyping of single nucleotide polymorphisms in the human genome Science New York N Y 1998 05 15 T 280 vyp 5366 S 1077 1082 ISSN 0036 8075 19 aprelya 2017 goda J B Fan A Oliphant R Shen B G Kermani F Garcia Highly parallel SNP genotyping Cold Spring Harbor Symposia on Quantitative Biology 2003 01 01 T 68 S 69 78 ISSN 0091 7451 19 aprelya 2017 goda A Kurg N Tonisson I Georgiou J Shumaker J Tollett Arrayed primer extension solid phase four color DNA resequencing and mutation detection technology Genetic Testing 2000 01 01 T 4 vyp 1 S 1 7 ISSN 1090 6576 doi 10 1089 109065700316408 19 aprelya 2017 goda Kevin L Gunderson Frank J Steemers Hongi Ren Pauline Ng Lixin Zhou Whole genome genotyping Methods in Enzymology 2006 01 01 T 410 S 359 376 ISSN 0076 6879 doi 10 1016 S0076 6879 06 10017 8 Paul J Gardina Tyson A Clark Brian Shimada Michelle K Staples Qing Yang Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array BMC genomics 2006 12 27 T 7 S 325 ISSN 1471 2164 doi 10 1186 1471 2164 7 325 23 aprelya 2017 goda John Castle Phil Garrett Engele Christopher D Armour Sven J Duenwald Patrick M Loerch Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing angl angl 2003 01 01 Vol 4 iss 10 P R66 ISSN 1474 760X doi 10 1186 gb 2003 4 10 r66 23 aprelya 2017 goda Weerayuth Kittichotirat Roger E Bumgarner Sirkka Asikainen Casey Chen Identification of the pangenome and its components in 14 distinct Aggregatibacter actinomycetemcomitans strains by comparative genomic analysis PloS One 2011 01 01 T 6 vyp 7 S e22420 ISSN 1932 6203 doi 10 1371 journal pone 0022420 23 aprelya 2017 goda Eta statya vhodit v chislo dobrotnyh statej russkoyazychnogo razdela Vikipedii
Вершина