Поддерживать
www.wikidata.ru-ru.nina.az
Zako ny Ke plera tri empiricheskih sootnosheniya ustanovlennye Iogannom Keplerom na osnove dlitelnyh astronomicheskih nablyudenij Tiho Brage Izlozheny Keplerom v rabotah opublikovannyh mezhdu 1609 i 1619 godami Opisyvayut idealizirovannuyu geliocentricheskuyu orbitu planety Sootnosheniya Keplera pozvolili Nyutonu postulirovat zakon vsemirnogo tyagoteniya kotoryj stal fundamentalnym v klassicheskoj mehanike V eyo ramkah zakony Keplera yavlyayutsya resheniem zadachi dvuh tel v sluchae prenebrezhimo maloj massy planety to est v predelnom perehode mp ms 0 displaystyle m p m s rightarrow 0 gde mp displaystyle m p ms displaystyle m s massy planety i zvezdy sootvetstvenno FormulirovkiPervyj zakon Keplera zakon ellipsov Pervyj zakon Keplera Kazhdaya planeta Solnechnoj sistemy dvizhetsya po ellipsu v odnom iz fokusov kotorogo nahoditsya Solnce Forma ellipsa i stepen ego shodstva s okruzhnostyu harakterizuetsya otnosheniem e ca displaystyle e frac c a gde c displaystyle c rasstoyanie ot centra ellipsa do ego fokusa fokalnoe rasstoyanie a displaystyle a bolshaya poluos Velichina e displaystyle e nazyvaetsya ekscentrisitetom ellipsa Pri c 0 displaystyle c 0 i sledovatelno e 0 displaystyle e 0 ellips prevrashaetsya v okruzhnost Vtoroj zakon Keplera zakon ploshadej Vtoroj zakon Keplera Kazhdaya planeta dvizhetsya v ploskosti prohodyashej cherez centr Solnca prichyom za ravnye promezhutki vremeni radius vektor soedinyayushij Solnce i planetu opisyvaet soboj ravnye ploshadi Primenitelno k nashej Solnechnoj sisteme s etim zakonom svyazany dva ponyatiya perigelij blizhajshaya k Solncu tochka orbity i afelij naibolee udalyonnaya tochka orbity Takim obrazom iz vtorogo zakona Keplera sleduet chto planeta dvizhetsya vokrug Solnca neravnomerno imeya v perigelii bolshuyu linejnuyu skorost chem v afelii Kazhdyj god v nachale yanvarya Zemlya prohodya cherez perigelij dvizhetsya bystree poetomu vidimoe peremeshenie Solnca po ekliptike k vostoku takzhe proishodit bystree chem v srednem za god V nachale iyulya Zemlya prohodya afelij dvizhetsya medlennee poetomu i peremeshenie Solnca po ekliptike zamedlyaetsya Zakon ploshadej ukazyvaet takzhe chto sila upravlyayushaya orbitalnym dvizheniem planet napravlena k Solncu Tretij zakon Keplera garmonicheskij zakon Kvadraty periodov obrasheniya planet vokrug Solnca otnosyatsya kak kuby bolshih poluosej orbit planet T12T22 a13a23 displaystyle frac T 1 2 T 2 2 frac a 1 3 a 2 3 Tretij zakon Keplera gde T1 displaystyle T 1 i T2 displaystyle T 2 periody obrasheniya dvuh planet vokrug Solnca a a1 displaystyle a 1 i a2 displaystyle a 2 dliny bolshih poluosej ih orbit Utverzhdenie spravedlivo takzhe dlya sputnikov Nyuton ustanovil chto gravitacionnoe prityazhenie planety opredelyonnoj massy zavisit tolko ot rasstoyaniya do neyo a ne ot drugih svojstv takih kak sostav ili temperatura On pokazal takzhe chto tretij zakon Keplera ne sovsem tochen v dejstvitelnosti v nego vhodit i massa planety T12 M m1 T22 M m2 a13a23 displaystyle frac T 1 2 M m 1 T 2 2 M m 2 frac a 1 3 a 2 3 gde M displaystyle M massa Solnca a m1 displaystyle m 1 i m2 displaystyle m 2 massy planet Poskolku dvizhenie i massa okazalis svyazany etu kombinaciyu garmonicheskogo zakona Keplera i zakona tyagoteniya Nyutona ispolzuyut dlya opredeleniya massy planet i sputnikov esli izvestny ih orbity i orbitalnye periody Vyvod zakonov Keplera iz zakonov klassicheskoj mehanikiVyvod Pervogo zakona Keplera Rassmotrim dvizhenie v polyarnyh koordinatah r 8 displaystyle r theta centr kotoryh sovpadaet s centrom mass sistemy priblizhenno sovpadaet s Solncem Pust r displaystyle mathbf r radius vektor k planete za r r r displaystyle hat mathbf r mathbf r r oboznachim edinichnyj vektor ukazyvayushij ego napravlenie Analogichno vvedyom 8 displaystyle hat boldsymbol theta edinichnyj vektor perpendikulyarnyj r displaystyle mathbf r napravlennyj v storonu uvelicheniya polyarnogo ugla 8 displaystyle theta Zapishem proizvodnye po vremeni oboznachaya ih tochkami r r r r8 8 displaystyle dot mathbf r dot r hat mathbf r r dot theta hat boldsymbol theta r r r8 2 r r8 2r 8 8 displaystyle ddot mathbf r ddot r r dot theta 2 hat mathbf r r ddot theta 2 dot r dot theta hat boldsymbol theta Zakon vsemirnogo tyagoteniya Nyutona glasit chto kazhdyj obekt vo Vselennoj prityagivaet kazhdyj drugoj obekt po linii soedinyayushej centry mass obektov proporcionalno masse kazhdogo obekta i obratno proporcionalno kvadratu rasstoyaniya mezhdu obektami To est uskorenie imeet vid a d2rdt2 f r r displaystyle mathbf a frac d 2 mathbf r dt 2 f r hat mathbf r Ili v koordinatnoj forme r r8 2 f r r8 2r 8 0 displaystyle begin cases ddot r r dot theta 2 f r r ddot theta 2 dot r dot theta 0 end cases Vo vtorom uravnenii raspishem 8 displaystyle ddot theta i r displaystyle dot r rd8 dt 2drdt8 0 displaystyle r d dot theta over dt 2 dr over dt dot theta 0 Izbavlyayas ot vremeni i razdelyaya peremennye poluchim d8 8 2drr displaystyle frac d dot theta dot theta 2 frac dr r Integrirovanie kotorogo dast ln 8 2ln r C displaystyle ln dot theta 2 ln r C Polagaya C ln ℓ displaystyle C ln ell i uproshaya logarifmy imeem okonchatelno r28 ℓ displaystyle r 2 dot theta ell Konstanta ℓ displaystyle ell po smyslu yavlyaetsya udelnym uglovym momentom ℓ r v displaystyle ell mathbf r times mathbf v My pokazali chto v pole centralnyh sil on sohranyaetsya Dlya raboty s pervym uravneniem udobno proizvesti zamenu r 1u displaystyle r frac 1 u I perepisat proizvodnye poputno izbavlyayas ot vremeni r 1u2u 1u2dudt 1u2d8dtdud8 ℓdud8 displaystyle dot r frac 1 u 2 dot u frac 1 u 2 frac du dt frac 1 u 2 frac d theta dt frac du d theta ell frac du d theta r ℓddtdud8 ℓd2udtd8 d8d8 ℓ8 d2ud82 ℓ2u2d2ud82 displaystyle ddot r ell frac d dt frac du d theta ell frac d 2 u dt d theta cdot frac d theta d theta ell dot theta frac d 2 u d theta 2 ell 2 u 2 frac d 2 u d theta 2 Uravnenie dvizheniya v napravlenii r displaystyle hat mathbf r togda zapishetsya d2ud82 u 1ℓ2u2f 1u displaystyle frac d 2 u d theta 2 u frac 1 ell 2 u 2 f left frac 1 u right Zakon vsemirnogo tyagoteniya Nyutona svyazyvaet silu na edinicu massy s rasstoyaniem kak f 1u f r GMr2 GMu2 displaystyle f left 1 over u right f r GM over r 2 GMu 2 gde G displaystyle G universalnaya gravitacionnaya konstanta i M displaystyle M massa zvezdy V rezultate d2ud82 u GMℓ2 displaystyle frac d 2 u d theta 2 u frac GM ell 2 Eto differencialnoe uravnenie mozhno perepisat v polnyh proizvodnyh ddu 12 dud8 2 12u2 ddu GMℓ2u displaystyle frac d du left frac 1 2 left frac du d theta right 2 frac 1 2 u 2 right frac d du left frac GM ell 2 u right Izbavlyayas ot kotoryh poluchim dud8 2 u2 2GMℓ2u C displaystyle left frac du d theta right 2 u 2 frac 2GM ell 2 u C I okonchatelno dud8 C 2GMℓ2u u2 displaystyle frac du d theta pm sqrt C frac 2GM ell 2 u u 2 Razdeliv peremennye i proizvedya elementarnoe integrirovanie poluchim obshee reshenie u GMℓ2 1 ecos 8 80 displaystyle u frac GM ell 2 left 1 e cos theta theta 0 right dlya konstant integrirovaniya e displaystyle e i 80 displaystyle theta 0 zavisyashih ot nachalnyh uslovij Zamenyaya u displaystyle u na 1 r displaystyle r i vvodya p ℓ2GM displaystyle p frac ell 2 GM imeem okonchatelno p r 1 ecos 8 80 displaystyle p r 1 e cos theta theta 0 My poluchili uravnenie konicheskogo secheniya s parametrom p displaystyle p i ekscentrisitetom e displaystyle e i nachalom sistemy koordinat v odnom iz fokusov Takim obrazom pervyj zakon Keplera pryamo sleduet iz zakona vsemirnogo tyagoteniya Nyutona i vtorogo zakona Nyutona Vyvod Vtorogo zakona Keplera Po opredeleniyu moment impulsa L displaystyle mathbf L tochechnogo tela s massoj m displaystyle m i skorostyu v displaystyle mathbf v zapisyvaetsya v vide L def r p r mv displaystyle mathbf L stackrel mathrm def mathbf r times mathbf p mathbf r times m mathbf v gde r displaystyle mathbf r radius vektor tela a p mv displaystyle mathbf p m mathbf v ego impuls Ploshad zametaemaya radius vektorom r displaystyle mathbf r za vremya dt displaystyle dt iz geometricheskih soobrazhenij ravna dS 12rsin ϕvdt 12 r v dt L 2mdt ℓ2dt displaystyle dS frac 1 2 r sin phi vdt frac 1 2 mathbf r times mathbf v dt frac mathbf L 2m dt frac ell 2 dt gde ϕ displaystyle phi predstavlyaet soboj ugol mezhdu vektorami r displaystyle mathbf r i v displaystyle mathbf v Pri vyvode pervogo zakona bylo pokazano chto ℓ const displaystyle ell const To zhe samoe mozhno poluchit prostym differencirovaniem uglovogo momenta dLdt r F drdt mdrdt r F v p 0 displaystyle frac d mathbf L dt mathbf r times mathbf F left frac d mathbf r dt times m frac d mathbf r dt right mathbf r times mathbf F mathbf v times mathbf p 0 Poslednij perehod obyasnyaetsya ravenstvom nulyu vektornogo proizvedeniya kolinearnyh vektorov Dejstvitelno sila zdes vsegda napravlena po radius vektoru togda kak impuls napravlen vdol skorosti po opredeleniyu Poluchili chto L displaystyle mathbf L ne zavisit ot vremeni Znachit L displaystyle mathbf L postoyanen a sledovatelno i proporcionalnaya ej skorost zametaniya ploshadi dSdt displaystyle frac dS dt konstanta Vyvod Tretego zakona Keplera Tretij zakon Keplera Vtoroj zakon Keplera utverzhdaet chto radius vektor obrashayushegosya tela zametaet ravnye ploshadi za ravnye promezhutki vremeni Esli teper my vozmyom ochen malye promezhutki vremeni v moment kogda planeta nahoditsya v tochkah P displaystyle P perigelij i A displaystyle A afelij to my smozhem approksimirovat ploshad treugolnikami s vysotami ravnymi rasstoyaniyu ot planety do Solnca i osnovaniem ravnym proizvedeniyu skorosti planety na vremya 12 1 e a VAdt 12 1 e a VBdt displaystyle begin matrix frac 1 2 end matrix cdot 1 varepsilon a cdot V A dt begin matrix frac 1 2 end matrix cdot 1 varepsilon a cdot V B dt 1 e VA 1 e VB displaystyle 1 varepsilon cdot V A 1 varepsilon cdot V B VA VB 1 e1 e displaystyle V A V B cdot frac 1 varepsilon 1 varepsilon Ispolzuya zakon sohraneniya energii dlya polnoj energii planety v tochkah A displaystyle A i B displaystyle B zapishem mVA22 GmM 1 e a mVB22 GmM 1 e a displaystyle frac mV A 2 2 frac GmM 1 varepsilon a frac mV B 2 2 frac GmM 1 varepsilon a VA22 VB22 GM 1 e a GM 1 e a displaystyle frac V A 2 2 frac V B 2 2 frac GM 1 varepsilon a frac GM 1 varepsilon a VA2 VB22 GMa 1 1 e 1 1 e displaystyle frac V A 2 V B 2 2 frac GM a cdot left frac 1 1 varepsilon frac 1 1 varepsilon right VB 1 e1 e 2 VB22 GMa 1 e 1 e 1 e 1 e displaystyle frac left V B cdot frac 1 varepsilon 1 varepsilon right 2 V B 2 2 frac GM a cdot left frac 1 varepsilon 1 varepsilon 1 varepsilon 1 varepsilon right VB2 1 e1 e 2 VB2 2GMa 2e 1 e 1 e displaystyle V B 2 cdot left frac 1 varepsilon 1 varepsilon right 2 V B 2 frac 2GM a cdot left frac 2 varepsilon 1 varepsilon 1 varepsilon right VB2 1 e 2 1 e 2 1 e 2 4GMea 1 e 1 e displaystyle V B 2 cdot left frac 1 varepsilon 2 1 varepsilon 2 1 varepsilon 2 right frac 4GM varepsilon a cdot 1 varepsilon 1 varepsilon VB2 1 2e e2 1 2e e2 1 e 2 4GMea 1 e 1 e displaystyle V B 2 cdot left frac 1 2 varepsilon varepsilon 2 1 2 varepsilon varepsilon 2 1 varepsilon 2 right frac 4GM varepsilon a cdot 1 varepsilon 1 varepsilon VB2 4e 4GMe 1 e 2a 1 e 1 e displaystyle V B 2 cdot 4 varepsilon frac 4GM varepsilon cdot 1 varepsilon 2 a cdot 1 varepsilon 1 varepsilon VB GM 1 e a 1 e displaystyle V B sqrt frac GM cdot 1 varepsilon a cdot 1 varepsilon Teper kogda nashli VB displaystyle V B my mozhem najti sektornuyu skorost Tak kak ona postoyanna to mozhem vybrat lyubuyu tochku ellipsa naprimer dlya tochki B poluchim dAdt 12 1 ϵ a VBdtdt 12 1 ϵ a VB displaystyle frac dA dt frac frac 1 2 cdot 1 epsilon a cdot V B dt dt begin matrix frac 1 2 end matrix cdot 1 epsilon a cdot V B 12 1 e a GM 1 e a 1 e 12 GMa 1 e 1 e displaystyle begin matrix frac 1 2 end matrix cdot 1 varepsilon a cdot sqrt frac GM cdot 1 varepsilon a cdot 1 varepsilon begin matrix frac 1 2 end matrix cdot sqrt GMa cdot 1 varepsilon 1 varepsilon dd Odnako polnaya ploshad ellipsa ravna pa 1 e2 a displaystyle pi a sqrt 1 varepsilon 2 a chto ravno pab displaystyle pi ab poskolku b 1 e2 a displaystyle b sqrt 1 varepsilon 2 a Vremya polnogo oborota takim obrazom ravno T dAdt pa 1 e2 a displaystyle T cdot frac dA dt pi a sqrt 1 varepsilon 2 a T 12 GMa 1 e 1 e p 1 e2 a2 displaystyle T cdot begin matrix frac 1 2 end matrix cdot sqrt GMa cdot 1 varepsilon 1 varepsilon pi sqrt 1 varepsilon 2 a 2 T 2p 1 ϵ2 a2GMa 1 ϵ 1 ϵ 2pa2GMa 2pGMa3 displaystyle T frac 2 pi sqrt 1 epsilon 2 a 2 sqrt GMa cdot 1 epsilon 1 epsilon frac 2 pi a 2 sqrt GMa frac 2 pi sqrt GM sqrt a 3 T2 4p2GMa3 displaystyle T 2 frac 4 pi 2 GM a 3 Zametim chto esli massa m displaystyle m ne prenebrezhimo mala po sravneniyu s M displaystyle M to planeta budet obrashatsya vokrug Solnca s toj zhe skorostyu i po toj zhe orbite chto i materialnaya tochka obrashayushayasya vokrug massy M m displaystyle M m sm privedyonnaya massa Pri etom massu M displaystyle M v poslednej formule nuzhno zamenit na M m displaystyle M m T2 4p2G M m a3 displaystyle T 2 frac 4 pi 2 G M m a 3 Alternativnyj raschyot Rassmotrim planetu kak tochku massoj m displaystyle m vrashayushejsya po ellipticheskoj orbite v dvuh polozheniyah perigelij s radius vektorom r1 a c displaystyle r 1 a c skorostyu V1 displaystyle V 1 afelij s radius vektorom r2 c a displaystyle r 2 c a skorostyu V2 displaystyle V 2 Zapishem zakon sohraneniya momenta impulsa mV1r1 mV2r2 displaystyle mV 1 r 1 mV 2 r 2 i zakon sohraneniya energii mV122 GmMr1 mV222 GmMr2 displaystyle frac mV 1 2 2 frac GmM r 1 frac mV 2 2 2 frac GmM r 2 gde M massa Solnca Reshaya sistemu netrudno poluchit sootnoshenie na skorost planety v tochke perigelij V1 2GMr2 r1r1 r2 displaystyle V 1 sqrt 2GM frac r 2 r 1 r 1 r 2 Vyrazim sektornuyu skorost kotoraya po vtoromu zakonu Keplera yavlyaetsya postoyannoj velichinoj Vs 1 2 V1r1 GMr2r12 r1 r2 displaystyle V s 1 2 cdot V 1 r 1 sqrt GM frac r 2 r 1 2 r 1 r 2 Vychislim ploshad ellipsa po kotoromu dvizhetsya planeta S odnoj storony Sellipse pab displaystyle S ellipse pi ab gde a displaystyle a dlina bolshoj poluosi b displaystyle b dlina maloj poluosi orbity S drugoj storony vospolzovavshis tem chto dlya vychisleniya ploshadi sektora mozhno peremnozhit sektornuyu skorost na period oborota Sellipse Vs T T GMr2r12 r1 r2 displaystyle S ellipse V s cdot T T cdot sqrt frac GMr 2 r 1 2 r 1 r 2 Sledovatelno T GMr2r12 r1 r2 pab displaystyle T cdot sqrt frac GMr 2 r 1 2 r 1 r 2 pi ab Dlya dalnejshih preobrazovanij vospolzuemsya geometricheskimi svojstvami ellipsa Imeem sootnosheniya c2 a2 b2 displaystyle c 2 a 2 b 2 r1 r2 2a displaystyle r 1 r 2 2a r1 r2 a2 c2 b2 displaystyle r 1 cdot r 2 a 2 c 2 b 2 Podstavim v formulu ploshadi ellipsa T GMb24a pab displaystyle T cdot sqrt GM frac b 2 4a pi ab Otkuda okonchatelno poluchim Ta3 2 const displaystyle frac T a 3 2 const ili v tradicionnom vide T2a3 const displaystyle frac T 2 a 3 const Primechaniya Holton Gerald James Physics the Human Adventure From Copernicus to Einstein and Beyond Holton Gerald James Brush Stephen G 3rd paperback Rutgers University Press 2001 P 40 41 ISBN 978 0 8135 2908 0 neopr Data obrasheniya 12 dekabrya 2021 Arhivirovano 12 dekabrya 2021 goda Astronomia nova Aitiologitis seu Physica Coelestis tradita Commentariis de Motibus stellae Martis ex observationibus G V Tychnonis Prague 1609 Johannes Kepler Harmonices Mundi The Harmony of the World Linz Austria Johann Planck 1619 book 5 chapter 3 p 189 Sm takzhe Zakon vsemirnogo tyagoteniya Zadacha Bertrana Zadacha dvuh tel Zadacha tryoh telLiteratura Keplera zakony Enciklopedicheskij slovar yunogo astronoma sost N P Erpylev 2 e izd M Pedagogika 1986 S 121 122 336 s Smorodinskij Ya A Planety dvizhutsya po ellipsam Kvant 1979 12 S 13 19 Trefil Dzh Zakony Keplera 28 marta 2016 Elementy Iz kn Trefil Dzh Priroda nauki 200 zakonov mirozdaniya Geleos 2007 The Nature of Science 2003 James Trefil Cassel s Laws of Nature An A Z of Laws and Principles Governing the Workings of Our Universe 2002
Вершина