Поддерживать
www.wikidata.ru-ru.nina.az
O neravenstvah v socialno ekonomicheskom smysle sm Socialnoe neravenstvo Simvoly so shodnym nachertaniem く 〱 ᚲ b Simvoly so shodnym nachertaniem ح ܓ ܥ b Nera venstvo v matematike binarnoe otnoshenie svyazyvayushee dva chisla ili dva inyh matematicheskih obekta s pomoshyu odnogo iz perechislennyh nizhe znakov Oblast dopustimyh reshenij feasible region v zadachah linejnogo programmirovaniyaStrogie neravenstvaa lt b displaystyle a lt b oznachaet chto a displaystyle a menshe chem b displaystyle b a gt b displaystyle a gt b oznachaet chto a displaystyle a bolshe chem b displaystyle b Neravenstva a gt b displaystyle a gt b i b lt a displaystyle b lt a ravnosilny Govoryat chto znaki gt displaystyle gt i lt displaystyle lt protivopolozhny naprimer vyrazhenie znak neravenstva smenilsya na protivopolozhnyj oznachaet chto lt displaystyle lt zameneno na gt displaystyle gt ili naoborot Nestrogie neravenstvaa b displaystyle a leqslant b oznachaet chto a displaystyle a menshe ili ravno b displaystyle b a b displaystyle a geqslant b oznachaet chto a displaystyle a bolshe ili ravno b displaystyle b Russkoyazychnaya tradiciya nachertaniya znakov i sootvetstvuet mezhdunarodnomu standartu ISO 80000 2 Za rubezhom inogda ispolzuyutsya znaki i ili i Pro znaki displaystyle geqslant i displaystyle leqslant takzhe govoryat chto oni protivopolozhny Drugie tipy neravenstva b displaystyle a neq b oznachaet chto a displaystyle a ne ravno b displaystyle b a b displaystyle a gg b oznachaet chto velichina a displaystyle a namnogo bolshe chem b displaystyle b a b displaystyle a ll b oznachaet chto velichina a displaystyle a namnogo menshe chem b displaystyle b Dalee v dannoj state esli ne ogovoreno inoe ponyatie neravenstva otnositsya k pervym 4 tipam V elementarnoj matematike izuchayut chislovye neravenstva racionalnye irracionalnye trigonometricheskie logarifmicheskie pokazatelnye V obshej algebre analize geometrii rassmatrivayutsya neravenstva takzhe i mezhdu obektami nechislovoj prirody Svyazannye opredeleniyaNeravenstva s odinakovymi znakami nazyvayutsya odnoimyonnymi inogda ispolzuetsya termin odnogo smysla ili odinakovogo smysla Dopuskaetsya dvojnoe ili dazhe mnogokratnoe neravenstvo obedinyayushee neskolko neravenstv v odno Primer a lt b lt c displaystyle a lt b lt c eto kratkaya zapis pary neravenstv a lt b displaystyle a lt b i b lt c displaystyle b lt c Chislovye neravenstvaChislovye neravenstva soderzhat veshestvennye chisla dlya kompleksnyh chisel sravnenie na bolshe menshe ne opredeleno i mogut soderzhat takzhe simvoly neizvestnyh x y displaystyle x y dots Chislovye neravenstva soderzhashie neizvestnye velichiny podrazdelyayutsya analogichno uravneniyam na algebraicheskie i transcendentnye Algebraicheskie neravenstva v svoyu ochered podrazdelyayutsya na neravenstva pervoj stepeni vtoroj stepeni i tak dalee Naprimer neravenstvo 18x lt 414 displaystyle 18x lt 414 algebraicheskoe pervoj stepeni neravenstvo 2x3 7x 6 gt 0 displaystyle 2x 3 7x 6 gt 0 algebraicheskoe tretej stepeni neravenstvo 2x gt x 4 displaystyle 2 x gt x 4 transcendentnoe Svojstva Svojstva chislovyh neravenstv v nekotoryh otnosheniyah blizki k svojstvam uravnenij K obeim chastyam neravenstva mozhno pribavit odno i to zhe chislo Ot obeih chastej neravenstva mozhno otnyat odno i to zhe chislo Sledstvie kak i dlya uravnenij lyuboj chlen neravenstva mozhno perenesti v druguyu chast s protivopolozhnym znakom Naprimer iz a b lt c displaystyle a b lt c sleduet chto a lt c b displaystyle a lt c b Obe chasti neravenstva mozhno umnozhit na odno i to zhe polozhitelnoe chislo Odnoimyonnye neravenstva mozhno skladyvat esli naprimer a lt b displaystyle a lt b i c lt d displaystyle c lt d to a c lt b d displaystyle a c lt b d Neravenstva s protivopolozhnymi znakami mozhno analogichno pochlenno vychitat Esli vse chetyre chasti dvuh neravenstv polozhitelny to neravenstva mozhno peremnozhit Esli obe chasti neravenstva polozhitelny to ih mozhno vozvesti v odnu i tu zhe naturalnuyu stepen a takzhe logarifmirovat s lyubym osnovaniem esli osnovanie logarifma menshe 1 to znak neravenstva nado izmenit na protivopolozhnyj Drugie svojstvaTranzitivnost esli a lt b displaystyle a lt b i b lt c displaystyle b lt c to a lt c displaystyle a lt c i analogichno dlya prochih znakov Esli obe chasti neravenstva umnozhit ili razdelit na odno i to zhe otricatelnoe chislo to znak neravenstva izmenitsya na protivopolozhnyj bolshe na menshe bolshe ili ravno na menshe ili ravno i t d Reshenie neravenstv Pust dany funkcii f x displaystyle f left x right i g x displaystyle g left x right Esli trebuetsya najti vse chisla a displaystyle alpha iz oblasti yavlyayushejsya peresecheniem oblastej sushestvovaniya etih funkcij dlya kazhdogo iz kotoryh vypolnyaetsya neravenstvo f a gt g a displaystyle f left alpha right gt g left alpha right to govoryat chto trebuetsya reshit neravenstvof x gt g x displaystyle f left x right gt g left x right Esli neravenstvo soderzhit simvoly neizvestnyh to reshenie ego oznachaet vyyasnenie voprosa pri kakih znacheniyah neizvestnyh neravenstvo vypolnyaetsya Primery x2 lt 4 displaystyle x 2 lt 4 vypolnyaetsya pri 2 lt x lt 2 displaystyle 2 lt x lt 2 x2 gt 4 displaystyle x 2 gt 4 vypolnyaetsya esli x gt 2 displaystyle x gt 2 ili x lt 2 displaystyle x lt 2 x2 lt 4 displaystyle x 2 lt 4 ne vypolnyaetsya nikogda reshenij net x2 gt 4 displaystyle x 2 gt 4 vypolnyaetsya pri vseh x displaystyle x tozhdestvo Vnimanie esli vozvesti v chyotnuyu stepen neravenstvo soderzhashee neizvestnye mogut poyavitsya lishnie resheniya Primer esli neravenstvo x gt 3 displaystyle x gt 3 vozvesti v kvadrat x2 gt 9 displaystyle x 2 gt 9 to poyavitsya oshibochnoe reshenie x lt 3 displaystyle x lt 3 ne udovletvoryayushee ishodnomu neravenstvu Poetomu vse poluchennye takim obrazom resheniya sleduet proverit podstanovkoj v ishodnoe neravenstvo Neravenstva pervoj stepeni Neravenstvo pervoj stepeni imeet obshij format ax gt b displaystyle ax gt b ili ax lt b displaystyle ax lt b gde a 0 displaystyle a neq 0 rabota so znakami displaystyle geqslant i displaystyle leqslant analogichna Chtoby ego reshit razdelite neravenstvo na a displaystyle a i esli a lt 0 displaystyle a lt 0 izmenite znak neravenstva na protivopolozhnyj Primer 5x 11 gt 8x 1 displaystyle 5x 11 gt 8x 1 Privedyom podobnye chleny 3x gt 12 displaystyle 3x gt 12 ili x lt 4 displaystyle x lt 4 Sistemy neravenstv pervoj stepeni Esli odno i to zhe neizvestnoe vhodit bolee chem v odno neravenstvo nado reshit kazhdoe neravenstvo v otdelnosti i zatem sopostavit eti resheniya kotorye dolzhny vypolnyatsya vse vmeste Primer 1 Iz sistemy 4x 3 gt 5x 52x 4 lt 8x displaystyle begin cases 4x 3 gt 5x 5 2x 4 lt 8x end cases poluchaem dva resheniya dlya pervogo neravenstva x lt 2 displaystyle x lt 2 dlya vtorogo x gt 23 displaystyle x gt 2 over 3 Soedinyaya ih poluchaem otvet 23 lt x lt 2 displaystyle 2 over 3 lt x lt 2 Primer 2 2x 3 gt 3x 52x 4 gt 8x displaystyle begin cases 2x 3 gt 3x 5 2x 4 gt 8x end cases Resheniya x lt 2 displaystyle x lt 2 i x lt 23 displaystyle x lt 2 over 3 Vtoroe reshenie pogloshaet pervoe tak chto otvet x lt 23 displaystyle x lt 2 over 3 Primer 3 2x 3 lt 3x 52x 4 gt 8x displaystyle begin cases 2x 3 lt 3x 5 2x 4 gt 8x end cases Resheniya x gt 2 displaystyle x gt 2 i x lt 23 displaystyle x lt 2 over 3 oni nesovmestimy poetomu ishodnaya sistema ne imeet reshenij Neravenstva vtoroj stepeni Obshij vid neravenstva vtoroj stepeni nazyvaemogo takzhe kvadratnym neravenstvom x2 px q gt 0 displaystyle x 2 px q gt 0 ili x2 px q lt 0 displaystyle x 2 px q lt 0 Esli kvadratnoe uravnenie x2 px q 0 displaystyle x 2 px q 0 imeet veshestvennye korni x1 x2 displaystyle x 1 x 2 to neravenstvo mozhno privesti k vidu sootvetstvenno x x1 x x2 gt 0 displaystyle x x 1 x x 2 gt 0 ili x x1 x x2 lt 0 displaystyle x x 1 x x 2 lt 0 V pervom sluchae x x1 displaystyle x x 1 i x x2 displaystyle x x 2 dolzhny imet odinakovye znaki vo vtorom raznye Dlya okonchatelnogo otveta nado primenit sleduyushee prostoe pravilo Kvadratnyj tryohchlen x2 px q displaystyle x 2 px q s raznymi veshestvennymi kornyami otricatelen v intervale mezhdu kornyami i polozhitelen vne etogo intervala Esli okazalos chto u uravneniya x2 px q 0 displaystyle x 2 px q 0 veshestvennyh kornej net to ego levaya chast sohranyaet odin i tot zhe znak pri vseh x displaystyle x Poetomu ishodnoe neravenstvo vtoroj stepeni libo yavlyaetsya tozhdestvom libo ne imeet reshenij sm nizhe primery Primer 1 2x2 14x 20 gt 0 displaystyle 2x 2 14x 20 gt 0 Razdeliv na 2 displaystyle 2 privedyom neravenstvo k vidu x2 7x 10 lt 0 displaystyle x 2 7x 10 lt 0 Reshiv kvadratnoe uravnenie x2 7x 10 0 displaystyle x 2 7x 10 0 poluchaem korni x1 2 x2 5 displaystyle x 1 2 x 2 5 poetomu ishodnoe neravenstvo ravnosilno takomu x 2 x 5 lt 0 displaystyle x 2 x 5 lt 0 Soglasno privedennomu vyshe pravilu 2 lt x lt 5 displaystyle 2 lt x lt 5 chto i yavlyaetsya otvetom Primer 2 2x2 14x 20 lt 0 displaystyle 2x 2 14x 20 lt 0 Analogichno poluchaem chto x 2 displaystyle x 2 i x 5 displaystyle x 5 imeyut odinakovye znaki to est soglasno pravilu x lt 2 displaystyle x lt 2 ili x gt 5 displaystyle x gt 5 Primer 3 x2 6x 15 gt 0 displaystyle x 2 6x 15 gt 0 Uravnenie x2 6x 15 0 displaystyle x 2 6x 15 0 ne imeet veshestvennyh kornej poetomu levaya chast ego sohranyaet znak pri vseh x displaystyle x Pri x 0 displaystyle x 0 levaya chast polozhitelna poetomu ishodnoe neravenstvo est tozhdestvo verno pri vseh x displaystyle x Primer 4 x2 6x 15 lt 0 displaystyle x 2 6x 15 lt 0 Kak i v predydushem primere zdes levaya chast vsegda polozhitelna poetomu neravenstvo ne imeet reshenij Analogichno razlozheniem na mnozhiteli mozhno reshat neravenstva vysshih stepenej Drugoj sposob postroit grafik levoj chasti i opredelit kakie znaki ona imeet v razlichnyh intervalah Prochie neravenstva Sushestvuyut takzhe drobno racionalnye irracionalnye logarifmicheskie i trigonometricheskie neravenstva Nekotorye izvestnye neravenstvaNizhe privedeny prakticheski poleznye neravenstva tozhdestvenno vypolnyayushiesya esli neizvestnye popadayut v ukazannye granicy a 1a 2 displaystyle a 1 over a geqslant 2 gde a gt 0 displaystyle a gt 0 Ravenstvo imeet mesto tolko pri a 1 displaystyle a 1 ab a b2 displaystyle sqrt ab leqslant a b over 2 gde a b gt 0 displaystyle a b gt 0 Smysl srednee geometricheskoe dvuh chisel ne prevoshodit ih srednee arifmeticheskoe Ravenstvo imeet mesto tolko pri a b displaystyle a b Neravenstvo o srednih Neravenstvo Bernulli 1 x n 1 nx displaystyle 1 x n geqslant 1 nx gde x gt 1 n displaystyle x gt 1 n polozhitelnoe chislo bolshee 1Neravenstvo Koshi Bunyakovskogo Neravenstvo Jensena Neravenstvo treugolnika a b a b displaystyle a b leqslant a b Sm sledstviya etogo neravenstva v state Absolyutnaya velichina Znaki neravenstva v yazykah programmirovaniyaSimvol ne ravno v raznyh yazykah programmirovaniya zapisyvaetsya po raznomu Simvol Yazyki C C C Java JavaScript Perl PHP Python Wolfram Language lt gt Basic Pascal 1S Lua Haskell Fortran Ada Modula 2 OberonKody znakov neravenstvSimvol Izobrazhenie Yunikod Russkoe nazvanie HTML LaTeXKod Nazvanie Shestnadcaterichnoe Desyatichnoe Mnemonika lt lt displaystyle lt U 003C Less than sign Menshe amp x3C amp 60 amp lt lt textless gt gt displaystyle gt U 003E Greater than sign Bolshe amp x3E amp 62 amp gt gt textgreater displaystyle leqslant U 2A7D Less than or slanted equal to Menshe ili ravno amp x2A7D amp 10877 net leqslant displaystyle geqslant U 2A7E Greater than or slanted equal to Bolshe ili ravno amp x2A7E amp 10878 net geqslant displaystyle leq U 2264 Less than or equal to Menshe ili ravno amp x2264 amp 8804 amp le le leq displaystyle geq U 2265 Greater than or equal to Bolshe ili ravno amp x2265 amp 8805 amp ge ge geq displaystyle ll U 226A Much less than Mnogo menshe amp x226A amp 8810 net ll displaystyle gg U 226B Much greater than Mnogo bolshe amp x226B amp 8811 net ggSm takzheSravnenie programmirovanie PrimechaniyaNeravenstva Matematicheskaya enciklopediya v 5 tomah M Sovetskaya Enciklopediya 1982 T 3 S 999 16 oktyabrya 2013 goda Spravochnik po elementarnoj matematike 1978 s 177 Spravochnik po elementarnoj matematike 1978 s 178 Elementarnaya matematika 1976 s 217 222 Spravochnik po elementarnoj matematike 1978 s 180 181 Elementarnaya matematika 1976 s 212 213 219 222 Spravochnik po elementarnoj matematike 1978 s 174 176 LiteraturaBekkenbah E F Neravenstva M Mir 1965 Vygodskij M Ya Spravochnik po elementarnoj matematike M Nauka 1978 Pereizdanie M AST 2006 ISBN 5 17 009554 6 509 s Zajcev V V Ryzhkov V V Skanavi M I Elementarnaya matematika Povtoritelnyj kurs Izdanie trete stereotipnoe M Nauka 1976 591 s Hardi G G Litlvud D I Polia D Neravenstva M Inostrannaya literatura 1948
Вершина