Поддерживать
www.wikidata.ru-ru.nina.az
U etogo termina sushestvuyut i drugie znacheniya sm summa Su mma lat summa itog obshee kolichestvo v matematike rezultat primeneniya operacii slozheniya velichin chisel funkcij vektorov matric i t d libo rezultat posledovatelnogo vypolneniya neskolkih operacij slozheniya summirovaniya Obshimi dlya vseh sluchaev yavlyayutsya svojstva kommutativnosti associativnosti a takzhe distributivnosti po otnosheniyu k umnozheniyu esli dlya rassmatrivaemyh velichin umnozhenie opredeleno to est vypolnenie sootnoshenij a b b a displaystyle a b b a a b c a b c displaystyle a b c a b c a b c a c b c displaystyle a b cdot c a cdot c b cdot c c a b c a c b displaystyle c cdot a b c cdot a c cdot b V teorii mnozhestv summoj ili obedineniem mnozhestv nazyvaetsya mnozhestvo elementami kotorogo yavlyayutsya vse elementy obedinyaemyh mnozhestv vzyatye bez povtorenij Takzhe slozhenie nahozhdenie summy mozhet byt opredeleno dlya bolee slozhnyh algebraicheskih struktur summa grupp summa linejnyh prostranstv summa idealov i drugie primery V teorii kategorij opredelyaetsya ponyatie summy obektov Summa naturalnyh chiselOsnovnaya statya Slozhenie matematika Pust v mnozhestve N displaystyle mathbb N nahoditsya a displaystyle a elementov obrazuyushih podmnozhestvo A displaystyle A i b displaystyle b elementov obrazuyushih podmnozhestvo B displaystyle B A N B N displaystyle A subset mathbb N B subset mathbb N a i b naturalnye chisla Togda arifmeticheskoj summoj a b displaystyle a b budet kolichestvo elementov c displaystyle c obrazuyushih podmnozhestvo C N displaystyle C subset mathbb N poluchennoe pri dizyunktnom obedinenii dvuh ishodnyh podmnozhestv C A B displaystyle C A sqcup B Algebraicheskaya summaSummu matematicheski oboznachayut zaglavnoj grecheskoj bukvoj S sigma i mnai am am 1 am 2 an 1 an displaystyle sum i mathop m n a i a m a m 1 a m 2 cdots a n 1 a n gde i indeks summirovaniya ai peremennaya oboznachayushaya kazhdyj chlen v serii m nizhnyaya granica summirovaniya n verhnyaya granica summirovaniya Oboznachenie i m pod simvolom summirovaniya oznachaet chto nachalnoe startovoe znachenie indeksa i ekvivalentno m Iz etoj zapisi sleduet chto indeks i inkrementiruetsya na 1 v kazhdom chlene vyrazheniya i ostanovitsya kogda i n V programmirovanii dannoj procedure sootvetstvuet cikl for Primery zapisi i 1100i 1 2 3 4 99 100 displaystyle sum i mathop 1 100 i 1 2 3 4 99 100 i 36i2 32 42 52 62 86 displaystyle sum i mathop 3 6 i 2 3 2 4 2 5 2 6 2 86 Granicy mogut opuskatsya iz zapisi esli oni yasny iz konteksta ai2 i 1nai2 displaystyle sum a i 2 sum i mathop 1 n a i 2 Iterator mozhet byt vyrazheniem togda peremennaya oformlyaetsya so skobkami kak funkciya f displaystyle f Naprimer summa vseh f k displaystyle f k pri naturalnyh chislah k displaystyle k v opredelyonnom diapazone 0 k lt 100f k displaystyle sum 0 leq k lt 100 f k Summa f x displaystyle f x elementov x displaystyle x mnozhestva S displaystyle S x Sf x displaystyle sum x mathop in S f x Summa m d displaystyle mu d vseh polozhitelnyh chisel d displaystyle d yavlyayushihsya delitelyami chisla n displaystyle n d nm d displaystyle sum d n mu d Pod znakom iterativnogo summirovaniya mozhet ispolzovatsya neskolko indeksov naprimer i j i j displaystyle sum i j sum i sum j prichyom nabor iz neskolkih indeksov mozhno sokratit v vide tak nazyvaemogo multiindeksa Beskonechnaya summa V matematicheskom analize linejnoj algebre i nekotoryh drugih razdelah matematiki opredelyaetsya ponyatie beskonechnogo ryada summy beskonechnogo chisla slagaemyh Primery posledovatelnyh summ 1 Summa arifmeticheskoj progressii i 0n a0 b i n 1 a0 an2 displaystyle sum i 0 n a 0 b cdot i n 1 frac a 0 a n 2 gde b displaystyle b raznost arifmeticheskoj progressii 2 Summa geometricheskoj progressii i 0n a0 ki a0 1 kn 11 k displaystyle sum i 0 n a 0 cdot k i a 0 cdot frac 1 k n 1 1 k gde k displaystyle k znamenatel geometricheskoj progressii 3 k 1nk3 n n 1 2 2 k 1nk 2 displaystyle sum limits k 1 n k 3 left frac n n 1 2 right 2 left sum limits k 1 n k right 2 4 i 0n 1p i pp 1 1 1pn 1 p 1 n 0 displaystyle sum i 0 n left frac 1 p right i frac p p 1 left 1 frac 1 p n 1 right quad p neq 1 n geq 0 Dokazatelstvo i 0n 1p i i 0n1 1pi 1 1 1p n 11 1p pn 1 1pn 1p 1p pn 1 1pn p 1 pp 1 1 1pn 1 displaystyle sum i 0 n left frac 1 p right i sum i 0 n 1 cdot frac 1 p i 1 cdot frac 1 left frac 1 p right n 1 1 frac 1 p frac frac p n 1 1 p n 1 frac p 1 p frac p n 1 1 p n p 1 frac p p 1 left 1 frac 1 p n 1 right 5 i 0nipi npn 2 n 1 pn 1 p p 1 2 p 1 displaystyle sum i 0 n ip i frac np n 2 n 1 p n 1 p p 1 2 quad p neq 1 Dokazatelstvo i 0nipi i 1nipi p i 1nipi 1 p i 0n 1 i 1 pi p i 0n 1ipi i 0n 1pi p i 0nipi p npn p 1 pn1 p displaystyle sum i 0 n ip i sum i 1 n ip i p cdot sum i 1 n ip i 1 p cdot sum i 0 n 1 i 1 p i p cdot left sum i 0 n 1 ip i sum i 0 n 1 p i right p cdot sum i 0 n ip i p cdot np n p cdot frac 1 p n 1 p Rightarrow 1 p i 0nipi npn 1 1 p p pn 11 p i 0nipi npn 2 n 1 pn 1 p 1 p 2 displaystyle Rightarrow 1 p sum i 0 n ip i frac np n 1 1 p p p n 1 1 p Rightarrow sum i 0 n ip i frac np n 2 n 1 p n 1 p 1 p 2 6 i 0npi p 1 i 0n 1 n i pi n 1 p 1 displaystyle sum i 0 n p i p 1 sum i 0 n 1 n i p i n 1 quad p neq 1 Dokazatelstvo p 1 i 0n 1 n i pi n 1 p 1 i 0n n i pi n 1 p 1 n i 0npi i 0nipi n 1 displaystyle p 1 sum i 0 n 1 n i p i n 1 p 1 sum i 0 n n i p i n 1 p 1 left n cdot sum i 0 n p i sum i 0 n ip i right n 1 p 1 n 1 pn 11 p npn 2 n 1 pn 1 p 1 p 2 n 1 displaystyle p 1 left n cdot frac 1 p n 1 1 p frac np n 2 n 1 p n 1 p 1 p 2 right n 1 npn 2 np npn 1 n npn 2 npn 1 pn 1 p pn n p 1p 1 displaystyle frac np n 2 np np n 1 n np n 2 np n 1 p n 1 p pn n p 1 p 1 pn 1 1p 1 i 0npi displaystyle frac p n 1 1 p 1 sum i 0 n p i Naprimer pri p 10 displaystyle p 10 poluchaetsya i 0n10i 9 i 0n 1 n i 10i n 1 textstyle sum i 0 n 10 i 9 cdot sum i 0 n 1 n i 10 i n 1 a eto posledovatelnost ravenstv sleduyushego vida 1 9 0 1 11 9 1 2 111 9 12 3 1111 9 123 4 11111 9 1234 5 displaystyle 1 9 cdot 0 1 quad 11 9 cdot 1 2 quad 111 9 cdot 12 3 quad 1111 9 cdot 123 4 quad 11111 9 cdot 1234 5 dd dd Neopredelyonnaya summa Neopredelyonnoj summoj ai displaystyle a i po i displaystyle i nazyvaetsya takaya funkciya f i displaystyle f i oboznachaemaya iai textstyle sum i a i chto i f i 1 f i ai textstyle forall i f i 1 f i a i Diskretnaya formula Nyutona Lejbnica Osnovnaya statya Teorema Nyutona Lejbnica Esli najdena proizvodnaya ai f i 1 f i displaystyle a i f i 1 f i to i abai f b 1 f a textstyle sum i a b a i f b 1 f a EtimologiyaLatinskoe slovo summa perevoditsya kak glavnyj punkt sushnost itog S XV veka slovo nachinaet upotreblyatsya v sovremennom smysle a takzhe poyavlyaetsya glagol summirovat 1489 god Eto slovo proniklo vo mnogie sovremennye yazyki summa v russkom sum v anglijskom somme vo francuzskom Specialnyj simvol dlya oboznacheniya summy S pervym vvyol Leonard Ejler v 1755 godu ego podderzhal Lagranzh odnako dolgoe vremya s etim simvolom konkuriroval znak S Okonchatelno oboznachenie S dlya summy utverdili uzhe v XVIII veke Fure i Yakobi KodirovkaV Yunikode est simvol summy U 2211 n ary summation HTML amp 8721 amp sum Sm takzheSlozhenie ProizvedeniePrimechaniyaGraham Ronald L Knuth Donald E Patashnik Oren Chapter 2 Sums Concrete Mathematics A Foundation for Computer Science 2nd Edition angl Addison Wesley Professional 1994 ISBN 978 0201558029 nedostupnaya ssylka Aleksandrova N V Istoriya matematicheskih terminov ponyatij oboznachenij Slovar spravochnik 3 e izd SPb LKI 2008 S 175 248 s ISBN 978 5 382 00839 4 LiteraturaFihtengolc G M Kurs differencialnogo i integralnogo ischisleniya 7 e M Nauka 1969 T 1 608 s 100 000 ekz Dlya uluchsheniya etoj stati po matematike zhelatelno Prostavit snoski vnesti bolee tochnye ukazaniya na istochniki Posle ispravleniya problemy isklyuchite eyo iz spiska Udalite shablon esli ustraneny vse nedostatki
Вершина