Поддерживать
www.wikidata.ru-ru.nina.az
V matematike funkciya raspredeleniya prostyh chisel ili pi funkciya p x displaystyle pi x eto funkciya ravnaya chislu prostyh chisel menshih libo ravnyh dejstvitelnomu chislu x Ona oboznachaetsya p x displaystyle pi x eto nikak ne svyazano s chislom pi Znacheniya pi funkcii dlya pervyh 60 naturalnyh chiselIstoriyaBolshoj interes v teorii chisel predstavlyaet skorost rosta pi funkcii V konce XVIII stoletiya Gaussom i Lezhandrom bylo vydvinuto predpolozhenie chto pi funkciya ocenivaetsya kak xln x displaystyle frac x ln x v smysle chto limx p x x ln x 1 displaystyle lim limits x to infty frac pi x x ln x 1 Eto utverzhdenie teorema o raspredelenii prostyh chisel Ono ekvivalentno utverzhdeniyu limx p x li x 1 displaystyle lim limits x to infty frac pi x operatorname li x 1 gde li displaystyle operatorname li eto integralnyj logarifm Teorema o prostyh chislah vpervye byla dokazana v 1896 Zhakom Adamarom i nezavisimo Valle Pussenom ispolzuya dzeta funkciyu Rimana vvedennuyu Rimanom v 1859 Tochnee rost p x displaystyle pi x sejchas opisyvaetsya kak p x li x O xe ln x 15 displaystyle pi x operatorname li x O bigl xe sqrt ln x 15 bigr gde O displaystyle O oboznachaet O bolshoe Kogda x ne silno veliko li x displaystyle operatorname li x bolshe chem p x displaystyle pi x odnako raznost p x li x displaystyle pi x operatorname li x menyaet svoj znak beskonechnoe chislo raz naimenshee naturalnoe chislo dlya kotorogo proishodit smena znaka nazyvaetsya chislom Skyuza Dokazatelstva teoremy o prostyh chislah ne ispolzuyushie dzeta funkciyu ili kompleksnyj analiz byli najdeny v 1948 godu Atle Selbergom i Paulem Erdyoshom bolshej chastyu nezavisimo Tablicy dlya pi funkcii x ln x i li x V sleduyushej tablice pokazan rost funkcij p x xln x li x displaystyle pi x frac x ln x operatorname li x po stepenyam 10 x p x p x x ln x li x p x x p x p x x dolya prostyh chisel 10 4 0 3 2 2 2 500 40 102 25 3 3 5 1 4 000 25 103 168 23 10 5 952 16 8 104 1 229 143 17 8 137 12 3 105 9 592 906 38 10 425 9 59 106 78 498 6 116 130 12 740 7 85 107 664 579 44 158 339 15 047 6 65 108 5 761 455 332 774 754 17 357 5 76 109 50 847 534 2 592 592 1 701 19 667 5 08 1010 455 052 511 20 758 029 3 104 21 975 4 55 1011 4 118 054 813 169 923 159 11 588 24 283 4 12 1012 37 607 912 018 1 416 705 193 38 263 26 590 3 76 1013 346 065 536 839 11 992 858 452 108 971 28 896 3 46 1014 3 204 941 750 802 102 838 308 636 314 890 31 202 3 20 1015 29 844 570 422 669 891 604 962 452 1 052 619 33 507 2 98 1016 279 238 341 033 925 7 804 289 844 393 3 214 632 35 812 2 79 1017 2 623 557 157 654 233 68 883 734 693 281 7 956 589 38 116 2 62 1018 24 739 954 287 740 860 612 483 070 893 536 21 949 555 40 420 2 47 1019 234 057 667 276 344 607 5 481 624 169 369 960 99 877 775 42 725 2 34 1020 2 220 819 602 560 918 840 49 347 193 044 659 701 222 744 644 45 028 2 22 1021 21 127 269 486 018 731 928 446 579 871 578 168 707 597 394 254 47 332 2 11 1022 201 467 286 689 315 906 290 4 060 704 006 019 620 994 1 932 355 208 49 636 2 01 1023 1 925 320 391 606 803 968 923 37 083 513 766 578 631 309 7 250 186 216 51 939 1 92 1024 18 435 599 767 349 200 867 866 339 996 354 713 708 049 069 17 146 907 278 54 243 1 84 1025 176 846 309 399 143 769 411 680 3 128 516 637 843 038 351 228 55 160 980 939 56 546 1 77 1026 1 699 246 750 872 437 141 327 603 28 883 358 936 853 188 823 261 155 891 678 121 58 850 1 70 1027 16 352 460 426 841 680 446 427 399 267 479 615 610 131 274 163 365 508 666 658 006 61 153 1 64 V OEIS pervaya kolonka znachenij p x displaystyle pi x eto posledovatelnost A006880 p x xln x 0 5 displaystyle pi x left lfloor frac x ln x 0 5 right rfloor eto posledovatelnost A057835 a li x 0 5 p x displaystyle lfloor operatorname li x 0 5 rfloor pi x eto posledovatelnost A057752 Algoritmy vychisleniya pi funkciiProstoj sposob najti p x displaystyle pi x esli x displaystyle x ne ochen veliko eto ispolzovanie resheta Eratosfena vydayushego prostye ne prevoshodyashie x displaystyle x i podschitat ih Bolee produmannyj sposob vychisleniya p x displaystyle pi x byl dan Lezhandrom dan x displaystyle x esli p1 p2 pk displaystyle p 1 p 2 ldots p k razlichnye prostye chisla to chislo celyh chisel ne prevoshodyashih x displaystyle x i ne delyashihsya na vse pi displaystyle p i ravno x i xpi i lt j xpipj i lt j lt k xpipjpk displaystyle lfloor x rfloor sum i left lfloor frac x p i right rfloor sum i lt j left lfloor frac x p i p j right rfloor sum i lt j lt k left lfloor frac x p i p j p k right rfloor cdots gde displaystyle lfloor cdots rfloor oboznachaet celuyu chast Sledovatelno poluchennoe chislo ravno p x p x 1 displaystyle pi x pi left sqrt x right 1 esli chisla p1 p2 pk displaystyle p 1 p 2 ldots p k eto vse prostye chisla ne prevoshodyashie x displaystyle sqrt x V 1870 1885 godah v serii statej Ernst Majssel opisal i ispolzoval prakticheskij kombinatornyj sposob vychisleniya p x displaystyle pi x Pust p1 p2 pn displaystyle p 1 p 2 ldots p n pervye n displaystyle n prostyh oboznachim F m n displaystyle Phi m n chislo naturalnyh chisel ne prevoshodyashih m displaystyle m kotorye ne delyatsya ni na odno pi displaystyle p i Togda F m n F m n 1 F mpn n 1 displaystyle Phi m n Phi m n 1 Phi left left frac m p n right n 1 right Vozmem naturalnoe m displaystyle m esli n p m3 displaystyle n pi left sqrt 3 m right i esli m p m n displaystyle mu pi left sqrt m right n to p m F m n n m 1 m2 m2 1 k 1mp mpn k displaystyle pi m Phi m n n mu 1 frac mu 2 mu 2 1 sum k 1 mu pi left frac m p n k right Ispolzuya etot podhod Majssel vychislil p x displaystyle pi x dlya x 5 105 106 107 108 displaystyle x 5 cdot 10 5 10 6 10 7 10 8 V 1959 godu Derrik Genri Lemer rasshiril i uprostil metod Majsselya Opredelim dlya dejstvitelnogo m displaystyle m i dlya naturalnyh n k displaystyle n k velichinu Pk m n displaystyle P k m n kak chislo chisel ne prevoshodyashih m imeyushih rovno k prostyh mnozhitelej prichem vse oni prevoshodyat pn displaystyle p n Krome togo polozhim P0 m n 1 displaystyle P 0 m n 1 Togda F m n k 0 Pk m n displaystyle Phi m n sum k 0 infty P k m n gde summa yavno vsegda imeet konechnoe chislo nenulevyh slagaemyh Pust y displaystyle y celoe takoe chto m3 y m displaystyle sqrt 3 m leqslant y leqslant sqrt m i polozhim n p y displaystyle n pi y Togda P1 m n p m n displaystyle P 1 m n pi m n i Pk m n 0 displaystyle P k m n 0 pri k 3 displaystyle k geqslant 3 Sledovatelno p m F m n n 1 P2 m n displaystyle pi m Phi m n n 1 P 2 m n Vychislenie P2 m n displaystyle P 2 m n mozhet byt polucheno sleduyushim sposobom P2 m n y lt p m p mp p p 1 displaystyle P 2 m n sum y lt p leqslant sqrt m left pi left frac m p right pi p 1 right S drugoj storony vychislenie F m n displaystyle Phi m n mozhet byt vypolneno s pomoshyu sleduyushih pravil F m 0 m displaystyle Phi m 0 lfloor m rfloor F m b F m b 1 F mpb b 1 displaystyle Phi m b Phi m b 1 Phi left frac m p b b 1 right Ispolzuya etot metod i IBM 701 Lemer smog vychislit p 1010 displaystyle pi left 10 10 right Dalnejshie usovershenstvovaniya etogo metoda byli sdelany Lagarias Miller Odlyzko Deleglise i Rivat Kitajskij matematik Hwang Cheng ispolzoval sleduyushie tozhdestva e a 1 8f x f ax displaystyle e a 1 Theta f x f ax J x n 1 p x1 n n displaystyle J x sum n 1 infty frac pi x 1 n n i polagaya x et displaystyle x e t vypolnyaya preobrazovanie Laplasa obeih chastej i primenyaya summu geometricheskoj progressii s en8 displaystyle e n Theta poluchil vyrazhenie 12pi c i c i g s tsds p t displaystyle frac 1 2 pi i int c i infty c i infty g s t s ds pi t ln z s s 1 e8 s 1g s displaystyle frac ln zeta s s 1 e Theta s 1 g s 8 s sdds displaystyle Theta s s frac d ds Drugie funkcii podschityvayushie prostye chislaDrugie funkcii podschityvayushie prostye chisla takzhe ispolzuyutsya poskolku s nimi udobnee rabotat Odna iz nih funkciya Rimana chasto oboznachaemaya kak P0 x displaystyle Pi 0 x ili J0 x displaystyle J 0 x Ona ispytyvaet pryzhok na 1 n dlya stepenej prostyh pn displaystyle p n prichem v tochke pryzhka x displaystyle x eyo znachenie ravno polusumme znachenij na obeih storonah ot x displaystyle x Eti dopolnitelnye detali nuzhny dlya togo chtoby ona mogla byt opredelena obratnym preobrazovaniem Mellina Formalno my opredelim P0 x displaystyle Pi 0 x kak P0 x 12 pn lt x1n pn x1n displaystyle Pi 0 x frac 1 2 bigg sum p n lt x frac 1 n sum p n leq x frac 1 n bigg gde p prostoe My takzhe mozhem zapisat P0 x n 2xL n ln n 12L x ln x n 1 1np0 xn displaystyle Pi 0 x sum limits n 2 x frac Lambda n ln n frac 1 2 frac Lambda x ln x sum n 1 infty frac 1 n pi 0 sqrt n x gde L n displaystyle Lambda n funkciya Mangoldta i p0 x lime 0p x e p x e 2 displaystyle pi 0 x lim varepsilon rightarrow 0 frac pi x varepsilon pi x varepsilon 2 Formula obrasheniya Myobiusa daet p0 x n 1 m n nP0 xn displaystyle pi 0 x sum n 1 infty frac mu n n Pi 0 sqrt n x Ispolzuya izvestnoe sootnoshenie mezhdu logarifmom dzeta funkcii Rimana i funkciej Mangoldta L displaystyle Lambda i ispolzuya my poluchim ln z s s 0 P0 x x s 1dx displaystyle ln zeta s s int 0 infty Pi 0 x x s 1 dx Funkciya Rimana imeet proizvodyashuyu funkciyu n 1 P0 n xn a 2 xa1 x 12 a 2 b 2 xab1 x 13 a 2 b 2 c 2 xabc1 x 14 a 2 b 2 c 2 d 2 xabcd1 x displaystyle sum n 1 infty Pi 0 n x n sum a 2 infty frac x a 1 x frac 1 2 sum a 2 infty sum b 2 infty frac x ab 1 x frac 1 3 sum a 2 infty sum b 2 infty sum c 2 infty frac x abc 1 x frac 1 4 sum a 2 infty sum b 2 infty sum c 2 infty sum d 2 infty frac x abcd 1 x cdots Funkcii Chebyshyova eto funkcii podschityvayushie stepeni prostyh chisel pn displaystyle p n s vesom ln p displaystyle ln p 8 x p xln p displaystyle theta x sum p leqslant x ln p ps x pn xln p n 1 8 xn n xL n displaystyle psi x sum p n leqslant x ln p sum n 1 infty theta sqrt n x sum n leqslant x Lambda n Formuly dlya funkcij podschityvayushih prostye chislaFormuly dlya funkcij podschityvayushih prostye chisla byvayut dvuh vidov arifmeticheskie formuly i analiticheskie formuly Analiticheskie formuly dlya takih funkcij byli vpervye ispolzovany dlya dokazatelstva teoremy o prostyh chislah Oni proishodyat ot rabot Rimana i Mangoldta i v obshem izvestny kak Sushestvuet sleduyushee vyrazhenie dlya ps displaystyle psi funkcii Chebyshyova ps0 x x rxrr ln 2p 12ln 1 x 2 displaystyle psi 0 x x sum rho frac x rho rho ln 2 pi frac 1 2 ln 1 x 2 gde ps0 x lime 0ps x e ps x e 2 displaystyle psi 0 x lim varepsilon rightarrow 0 frac psi x varepsilon psi x varepsilon 2 Zdes r displaystyle rho probegaet nuli dzeta funkcii v kriticheskoj polose gde dejstvitelnaya chast r displaystyle rho lezhit mezhdu nulem i edinicej Formula verna dlya vseh x gt 1 displaystyle x gt 1 Ryad po kornyam shoditsya uslovno i mozhet byt vzyat v poryadke absolyutnogo znacheniya vozrastaniya mnimoj chasti kornej Zametim chto analogichnaya summa po trivialnym kornyam daet poslednee slagaemoe v formule Dlya P0 x displaystyle scriptstyle Pi 0 x my imeem sleduyushuyu slozhnuyu formulu P0 x li x rli xr ln 2 x dtt t2 1 ln t displaystyle Pi 0 x operatorname li x sum rho operatorname li x rho ln 2 int x infty frac dt t t 2 1 ln t Opyat zhe formula verna dlya vseh x gt 1 displaystyle x gt 1 gde r displaystyle rho netrivialnye nuli zeta funkcii uporyadochennye po ih absolyutnomu znacheniyu i snova poslednij integral beretsya so znakom minus i yavlyaetsya takoj zhe summoj no po trivialnym nulyam Vyrazhenie li xr displaystyle operatorname li x rho vo vtorom chlene mozhet byt rassmotrenno kak Ei rln x displaystyle operatorname Ei rho ln x gde Ei displaystyle operatorname Ei eto analiticheskoe prodolzhenie integralnoj pokazatelnoj funkcii na kompleksnuyu ploskost s vetvyu vyrezannoj vdol pryamoj x lt 0 displaystyle x lt 0 Takim obrazom formula obrasheniya Myobiusa daet nam p0 x R x rR xr 1ln x 1parctg pln x displaystyle pi 0 x operatorname R x sum rho operatorname R x rho frac 1 ln x frac 1 pi mathop mathrm arctg frac pi ln x vernoe dlya x gt 1 displaystyle x gt 1 gde R x n 1 m n nli x1 n 1 k 1 ln x kk kz k 1 displaystyle operatorname R x sum n 1 infty frac mu n n operatorname li x 1 n 1 sum k 1 infty frac ln x k k k zeta k 1 nazyvaetsya R funkciej takzhe v chest Rimana Poslednij ryad v nej izvesten kak ryad Grama i shoditsya dlya vseh x gt 0 displaystyle x gt 0 Summa po netrivialnym nulyam dzeta funkcii v formule dlya p0 x displaystyle pi 0 x opisyvaet fluktuacii p0 x displaystyle pi 0 x v to vremya kak ostalnye slagaemye dayut gladkuyu chast pi funkcii poetomu my mozhem ispolzovat R x 1ln x 1parctg pln x displaystyle operatorname R x frac 1 ln x frac 1 pi mathop mathrm arctg frac pi ln x kak nailuchshee priblizhenie dlya p x displaystyle pi x dlya x gt 1 displaystyle x gt 1 Amplituda shumnoj chasti evristicheski ocenivaetsya kak x ln x displaystyle sqrt x ln x poetomu fluktuacii v raspredelenii prostyh mogut byt yavno predstavleny D displaystyle Delta funkciej D x p0 x R x 1ln x 1parctg pln x ln xx displaystyle Delta x left pi 0 x operatorname R x frac 1 ln x frac 1 pi mathop mathrm arctg frac pi ln x right frac ln x sqrt x Obshirnye tablicy znachenij D x displaystyle Delta x dostupny zdes NeravenstvaZdes vypisany nekotorye neravenstva dlya p x displaystyle pi x xln x lt p x lt 1 25506 xln xx 17 displaystyle frac x ln x lt pi x lt 1 25506 cdot frac x ln x qquad x geqslant 17 Levoe neravenstvo vypolnyaetsya pri x 17 displaystyle x geqslant 17 a pravoe pri x gt 1 displaystyle x gt 1 Neravenstva dlya n displaystyle n go prostogo chisla pn displaystyle p n nln n nln ln n 3 2 n lt pn lt nln n nln ln n n 6 displaystyle n ln n n ln ln n 3 2 cdot n lt p n lt n ln n n ln ln n n geqslant 6 Levoe neravenstvo verno pri n 2 displaystyle n geqslant 2 a pravoe pri n 6 displaystyle n geqslant 6 Imeet mesto sleduyushaya asimptotika dlya n displaystyle n go prostogo chisla pn displaystyle p n pn nln n 1 ln ln n 1ln n ln ln n 2ln2 n 1 2ln2 ln n 3ln ln n 11 2ln3 n O ln3 ln nln4 n displaystyle p n n ln n left 1 frac ln ln n 1 ln n frac ln ln n 2 ln 2 n frac 1 2 ln 2 ln n 3 ln ln n 11 2 ln 3 n O left frac ln 3 ln n ln 4 n right right Gipoteza RimanaOsnovnaya statya Gipoteza Rimana Gipoteza Rimana ekvivalentna bolee tochnoj granice oshibki priblizheniya p x displaystyle pi x integralnym logarifmom a otsyuda i bolee regulyarnomu raspredeleniyu prostyh chisel p x li x O xln x displaystyle pi x operatorname li x O sqrt x ln x V chastnosti p x li x lt 18pxln x x 2657 displaystyle pi x operatorname li x lt frac 1 8 pi sqrt x ln x qquad x geqslant 2657 Sm takzheTeorema o raspredelenii prostyh chisel Postulat Bertrana Chislo SkyuzaPrimechaniyaBach Eric Shallit Jeffrey Section 8 8 Algorithmic Number Theory neopr MIT Press 1996 T 1 S 234 ISBN 0 262 02405 5 Weisstein Eric W Prime Counting Function angl na sajte Wolfram MathWorld How many primes are there neopr Chris K Caldwell Data obrasheniya 2 dekabrya 2008 Arhivirovano 20 sentyabrya 2012 goda angl History of the Theory of Numbers I Divisibility and Primality angl Dover Publications 2005 ISBN 0 486 44232 2 K Ireland M Rosen A Classical Introduction to Modern Number Theory angl Second Springer 1998 ISBN 0 387 97329 X Tables of values of pi x and of pi2 x neopr Data obrasheniya 14 sentyabrya 2008 Arhivirovano 20 sentyabrya 2012 goda Values of p x and D x for various x s neopr Andrey V Kulsha Data obrasheniya 14 sentyabrya 2008 Arhivirovano 20 sentyabrya 2012 goda A table of values of pi x neopr Xavier Gourdon Pascal Sebah Patrick Demichel Data obrasheniya 14 sentyabrya 2008 Arhivirovano 20 sentyabrya 2012 goda Computing x The Meissel Lehmer Lagarias Miller Odlyzko method neopr Marc Deleglise and Joel Rivat Mathematics of Computation vol 65 number 33 January 1996 pages 235 245 Data obrasheniya 14 sentyabrya 2008 Arhivirovano 20 sentyabrya 2012 goda Hwang H Cheng 2001 Demarches de la Geometrie et des Nombres de l Universite du Bordeaux Prime Magic conference Titchmarsh E C The Theory of Functions 2nd ed angl Oxford University Press 1960 angl Gohl Gunnar Some calculations related to Riemann s prime number formula angl angl journal American Mathematical Society 1970 Vol 24 no 112 P 969 983 ISSN 0025 5718 doi 10 2307 2004630 JSTOR 2004630 Weisstein Eric W Riemann Prime Counting Function angl na sajte Wolfram MathWorld Weisstein Eric W Gram Series angl na sajte Wolfram MathWorld The encoding of the prime distribution by the zeta zeros neopr Matthew Watkins Data obrasheniya 14 sentyabrya 2008 Arhivirovano 20 sentyabrya 2012 goda angl Schoenfeld Lowell Approximate formulas for some functions of prime numbers angl Illinois J Math journal 1962 Vol 6 P 64 94 ISSN 0019 2082 28 fevralya 2019 goda Lowell Schoenfeld Sharper bounds for the Chebyshev functions 8 x and ps x II angl angl journal American Mathematical Society 1976 Vol 30 no 134 P 337 360 ISSN 0025 5718 doi 10 2307 2005976 JSTOR 2005976 LiteraturaK Prahar Raspredelenie prostyh chisel Mir 1967 V I Zenkin Raspredelenie prostyh chisel Elementarnye metody Kaliningrad 2008 SsylkiChris Caldwell The Nth Prime Page at The
Вершина