Поддерживать
www.wikidata.ru-ru.nina.az
Geneti cheskij kod angl Genetic code sovokupnost pravil soglasno kotorym v zhivyh kletkah posledovatelnost kodonov genov i mRNK perevoditsya v posledovatelnost aminokislot belkov Sobstvenno perevod translyaciyu osushestvlyaet ribosoma kotoraya soedinyaet aminokisloty v cepochku soglasno instrukcii zapisannoj v kodonah mRNK Sootvetstvuyushie aminokisloty dostavlyayutsya v ribosomu molekulami tRNK Geneticheskij kod vseh zhivyh organizmov Zemli edin imeyutsya lish neznachitelnye variacii chto svidetelstvuet o nalichii obshego predka Shema geneticheskogo kodaPosledovatelnost kodonov v chasti molekuly mRNK Kazhdyj kodon sostoit iz tryoh nukleotidov i sootvetstvuet edinstvennoj aminokislote Ribosoma sinteziruet belok soglasno instrukcii zapisannoj v mRNK prichyom sootvetstvie mezhdu kodonom i aminokislotoj opredelyaetsya geneticheskim kodom Pravila geneticheskogo koda opredelyayut kakoj aminokislote sootvetstvuet triplet tri podryad idushih nukleotida v mRNK Za redkimi isklyucheniyami kazhdomu kodonu sootvetstvuet tolko odna aminokislota Konkretnaya aminokislota mozhet kodirovatsya bolee chem odnim kodonom est takzhe kodony oznachayushie nachalo i konec belka Variant geneticheskogo koda kotoryj ispolzuetsya podavlyayushim bolshinstvom zhivyh organizmov nazyvayut standartnym ili kanonicheskim geneticheskim kodom Odnako izvestno neskolko desyatkov isklyuchenij iz standartnogo geneticheskogo koda naprimer pri translyacii v mitohondriyah ispolzuyutsya neskolko izmenyonnye pravila geneticheskogo koda Prostejshim predstavleniem geneticheskogo koda mozhet sluzhit tablica iz 64 yacheek v kotoroj kazhdaya yachejka sootvetstvuet odnomu iz 64 vozmozhnyh kodonov Istoriya izucheniyaMarshall Nirenberg nachavshij rasshifrovku geneticheskogo koda Popytki ponyat kakim obrazom posledovatelnost DNK kodiruet aminokislotnuyu posledovatelnost belkov nachali predprinimatsya pochti srazu zhe posle togo kak v 1953 godu byla ustanovlena struktura DNK dvojnaya spiral Georgij Gamov predpolozhil chto kodony dolzhny sostoyat iz tryoh nukleotidov chtoby kodonov hvatilo dlya vseh 20 aminokislot vsego zhe vozmozhno 64 razlichnyh kodona iz tryoh nukleotidov na kazhduyu iz tryoh pozicij mozhno postavit odin iz chetyryoh nukleotidov V 1961 godu tripletnost geneticheskogo koda udalos podtverdit eksperimentalno V tom zhe godu Marshall Nirenberg i ego kollega angl ispolzovali beskletochnuyu sistemu dlya translyacii in vitro V kachestve matricy byl vzyat oligonukleotid sostoyashij iz ostatkov uracila UUUU Peptid sintezirovannyj s nego soderzhal tolko aminokislotu fenilalanin Tak vpervye bylo ustanovleno znachenie kodona kodon UUU kodiruet fenilalanin Dalnejshie pravila sootvetstviya mezhdu kodonami i aminokislotami byli ustanovleny v laboratorii Severo Ochoa Bylo pokazano chto poliadeninovaya RNK AAA transliruetsya v polilizinovyj peptid a na matrice policitozinovoj RNK SSS sinteziruetsya peptid sostoyashij tolko iz ostatkov prolina Znachenie ostalnyh kodonov bylo ustanovleno pri pomoshi raznoobraznyh sopolimerov v hode eksperimentov provedyonnyh v laboratorii Hara Gobinda Korany Vskore posle etogo Robert Holli ustanovil strukturu molekuly tRNK kotoraya sluzhit posrednikom pri translyacii V 1968 godu Nirenberg Korana i Holli byli udostoeny Nobelevskoj premii po fiziologii i medicine Posle ustanovleniya pravil geneticheskogo koda mnogie uchyonye zanyalis ego angl Tak nachinaya s 2001 goda v geneticheskij kod byli vnedreny 40 aminokislot kotorye v prirode ne vhodyat v sostav belkov Dlya kazhdoj aminokisloty sozdavalis svoj kodon i sootvetstvuyushaya aminoacil tRNK sintetaza Iskusstvennoe rasshirenie geneticheskogo koda i sozdanie belkov s novymi aminokislotami mogut pomoch glubzhe izuchit strukturu belkovyh molekul a takzhe poluchit iskusstvennye belki s zadannymi svojstvami H Murakami i M Sisido smogli prevratit nekotorye kodony iz tryohnukleotidnyh v chetyryoh i pyatinukleotidnye Stiven Brenner poluchil 65 j kodon kotoryj byl funkcionalen in vivo V 2015 godu u bakterii Escherichia coli udalos izmenit znachenie vseh kodonov UGG s triptofana na tienopirrol alanin ne vstrechayushijsya v prirode V 2016 godu byl poluchen pervyj polusinteticheskij organizm bakteriya genom kotoroj soderzhal dva iskusstvennyh azotistyh osnovaniya X i Y sohranyayushihsya pri delenii V 2017 godu issledovateli iz Yuzhnoj Korei zayavili o sozdanii myshi s rasshirennym geneticheskim kodom sposobnoj sintezirovat belki s aminokislotami ne vstrechayushimisya v prirode SvojstvaRamki schityvaniya v mitohondrialnoj DNK cheloveka v oblasti genov angl i angl chyornym cvetom pokazan uchastok mezhdu poziciyami 8525 i 8580 V napravlenii schityvaniya 5 3 vozmozhny tri ramki schityvaniya nachinayushiesya s pervoj 1 vtoroj 2 i tretej pozicij 3 Sootvetstvie mezhdu kodonami kodony vydeleny kvadratnymi skobkami opredelyaetsya angl v ramke 1 dlya MT ATP8 pokazana krasnym ili v ramke 3 dlya MT ATP6 pokazana sinim Gen MT ATP8 zakanchivaetsya stop kodonom TAG otmechen krasnoj tochkoj v ramke 1 Gen MT ATP6 nachinaetsya s kodona ATG kodiruet aminokislotu metionin M i vydelen sinim kruzhkom v ramke 3 Vydelyayut sleduyushie svojstva geneticheskogo koda takzhe nazyvaemye principami translyacii tripletnost odnoj aminokislote sootvetstvuet triplet iz treh nukleotidov RNK neperekryvaemost odin nukleotid vhodit v sostav edinstvennogo tripleta odnoznachnost odnomu tripletu sootvetstvuet edinstvennaya aminokislota za isklyucheniem stop kodonov vyrozhdennost mnogim aminokislotam sootvetstvuet neskolko tripletov krome metionina i triptofana kompaktnost otsutstvie znakov prepinaniya vnutri gena nalichie stop kodonov universalnost geneticheskij kod edin dlya vseh zhivyh organizmov pomehoustojchivost bolshaya chast odnonukleotidnyh zamen vnutri tripletov ne privodit k izmeneniyu svojstv aminokisloty Ramka schityvaniya Geny kodiruyutsya v napravlenii 5 3 nukleotidnoj posledovatelnosti Ramka schityvaniya opredelyaetsya samym pervym tripletom s kotorogo nachinaetsya translyaciya Posledovatelnost neperekryvayushihsya kodonov nachinayushuyusya so start kodona i zakanchivayushuyusya stop kodonom nazyvayut otkrytoj ramkoj schityvaniya Naprimer posledovatelnost 5 AAATGAACG 3 sm ris pri chtenii s pervogo nukleotida razbivaetsya na kodony AAA TGA i ACG Esli chtenie nachinaetsya so vtorogo nukleotida to ej sootvetstvuyut kodony AAT i GAA Nakonec pri chtenii s tretego nukleotida ispolzuyutsya kodony ATG i AAC Takim obrazom lyubuyu posledovatelnost mozhno prochest v napravlenii 5 3 tremya raznymi sposobami s tremya raznymi ramkami schityvaniya prichyom v kazhdom sluchae posledovatelnost belkovogo produkta budet otlichatsya iz za raspoznavaniya ribosomoj raznyh kodonov Esli uchest chto DNK imeet dvucepochechnuyu strukturu to vozmozhny 6 ramok schityvaniya tri na odnoj cepi i tri na drugoj Odnako schityvanie genov s DNK ne yavlyaetsya sluchajnym Vse drugie ramki schityvaniya v predelah odnogo gena obychno soderzhat mnogochislennye stop kodony chtoby bystro ostanovit i umenshit metabolicheskuyu stoimost nepravilnogo sinteza Start i stop kodony Translyaciya informacii s posledovatelnosti mRNK v aminokislotnuyu posledovatelnost nachinaetsya s tak nazyvaemogo start kodona kak pravilo AUG prichyom u eukariot on chitaetsya kak metionin a u bakterij kak formilmetionin Odnogo start kodona nedostatochno dlya zapuska translyacii dlya nego neobhodimy faktory iniciacii translyacii a takzhe osobye elementy v sosednih posledovatelnostyah naprimer posledovatelnost Shajna Dalgarno u bakterij U nekotoryh organizmov v roli start kodonov ispolzuyutsya kodony GUG kotoryj v norme kodiruet valin i UUG kotoryj v standartnom kode sootvetstvuet lejcinu Posle iniciacionnogo kodona translyaciya prodolzhaetsya cherez posledovatelnoe schityvanie kodonov i prisoedinenie aminokislot drug k drugu ribosomoj do dostizheniya signala k prekrasheniyu translyacii stop kodona Sushestvuyut tri stop kodona kazhdyj iz kotoryh imeet svoyo nazvanie UAG yantar UGA opal i UAA ohra Stop kodony takzhe nazyvayut terminatornymi V kletkah net tRNK sootvetstvuyushih stop kodonam poetomu kogda ribosoma dohodit do stop kodona vmesto tRNK s nim vzaimodejstvuyut faktory terminacii translyacii kotorye gidrolizuyut poslednyuyu tRNK ot aminokislotnoj cepochki a zatem zastavlyayut ribosomu dissociirovat U bakterij v terminacii translyacii prinimayut uchastie tri angl RF 1 RF 2 i RF 3 RF 1 uznayot kodony UAG i UAA a RF 2 raspoznayot UAA i UGA Faktor RF 3 vypolnyaet vspomogatelnuyu rabotu Tryohmernaya struktura RF 1 i RF 2 napominaet formoj i raspredeleniem zaryada tRNK i takim obrazom predstavlyaet soboj primer angl U eukariot faktor terminacii translyacii eRF1 raspoznayot vse tri stop kodona Zavisimaya ot ribosomy GTFaza eRF3 kotoruyu rassmatrivayut kak vtoroj faktor terminacii translyacii eukariot pomogaet eRF1 v vysvobozhdenii s ribosomy gotovogo polipeptida Raspredelenie stop kodonov v genome organizma nesluchajno i mozhet byt svyazano s GC sostavom genoma Naprimer u shtamma E coli K 12 v genome imeetsya 2705 kodonov TAA 63 1257 TGA 29 i 326 TAG 8 pri GC sostave 50 8 Masshtabnoe issledovanie genomov raznyh vidov bakterij pokazalo chto dolya kodona TAA polozhitelno korreliruet s GC sostavom a dolya TGA otricatelno Chastota samogo redko ispolzuemogo stop kodona TAG ne svyazana s GC sostavom Sila stop kodonov takzhe neodinakova Spontannyj obryv translyacii chashe vsego proishodit na kodone UGA a na UAA rezhe vsego Pomimo sobstvenno stop kodona vazhnejshee znachenie dlya terminacii translyacii imeet ego okruzhenie Naibolee velika rol nukleotida raspolozhennogo srazu za stop kodonom 4 Veroyatno nukleotid 4 i drugie nukleotidy sleduyushie za nim vliyayut na terminaciyu translyacii obespechivaya sajty svyazyvaniya faktorov terminacii translyacii Po etoj prichine nekotorye issledovateli predlagayut rassmatrivat chetyryohnukleotidnyj stop signal vmesto tryohnukleotidnogo stop kodona Nukleotidy raspolozhennye vyshe stop kodonov takzhe vliyayut na translyaciyu Naprimer dlya drozhzhej bylo pokazano chto adenin raspolagayushijsya na 2 pozicii vyshe pervogo nukleotida stop kodona stimuliruet obryv translyacii na stop kodone UAG vozmozhno i na ostalnyh kodonah Inogda stop kodony vystupayut v roli smyslovyh Naprimer kodon UGA kodiruet nestandartnuyu aminokislotu selenocistein esli ryadom s nim v transkripte nahoditsya tak nazyvaemyj SECIS element Stop kodon UAG mozhet kodirovat druguyu nestandartnuyu aminokislotu pirrolizin Inogda stop kodon raspoznayotsya kak smyslovoj pri mutaciyah zatragivayushih tRNK Naibolee chasto eto yavlenie nablyudaetsya u virusov no ono takzhe opisano u bakterij drozhzhej drozofily i cheloveka u kotoryh igraet regulyatornuyu rol Geneticheskij kod i mutacii V hode replikacii DNK izredka voznikayut oshibki pri sinteze dochernej cepi Eti oshibki nazyvaemye mutaciyami mogut povliyat na fenotip organizma osobenno esli oni zatragivayut kodiruyushuyu oblast gena Oshibki proishodyat s chastotoj 1 na kazhdye 10 100 millionov par osnovanij p o tak kak DNK polimerazy mogut effektivno ispravlyat svoi oshibki Pod tochechnymi mutaciyami ponimayut edinichnye zameny odnogo azotistogo osnovaniya Esli novoe osnovanie otnositsya k tomu zhe klassu chto i ishodnoe oba puriny ili oba pirimidiny to mutaciyu otnosyat k tranziciyam Esli proishodit zamena purina na pirimidin ili pirimidina na purin to govoryat o transversiyah Tranzicii vstrechayutsya chashe transversij Primerami tochechnyh mutacij yavlyayutsya missens i nonsens mutacii Oni mogut vyzyvat takie zabolevaniya kak serpovidnokletochnaya anemiya i talassemiya sootvetstvenno Klinicheski znachimye missens mutacii privodyat k zamene aminokislotnogo ostatka na ostatok s drugimi fiziko himicheskimi svojstvami a nonsens mutacii zaklyuchayutsya v poyavlenii prezhdevremennogo stop kodona Mutacii pri kotoryh narushaetsya pravilnaya ramka schityvaniya iz za vstavok i delecij v sovokupnosti oni nazyvayutsya angl soderzhashih nekratnoe tryom chislo nukleotidov nazyvayutsya mutaciyami sdviga ramki schityvaniya Pri etih mutaciyah belkovyj produkt poluchaetsya sovershenno inoj chem v dikom tipe Kak pravilo pri sdvigah ramki schityvaniya poyavlyayutsya prezhdevremennye stop kodony kotorye vyzyvayut obrazovanie usechyonnyh belkov Poskolku eti mutacii znachitelno narushayut funkciyu belka oni dovolno redko zakreplyayutsya otborom neredko otsutstvie belka privodit k gibeli organizma eshyo do rozhdeniya Mutacii sdviga ramki schityvaniya svyazany s takimi zabolevaniyami kak bolezn Teya Saksa Hotya podavlyayushee chislo mutacij vredno ili angl nekotorye okazyvayutsya poleznymi Oni mogut davat organizmu luchshuyu prisposoblennost po sravneniyu s dikim tipom k opredelyonnym usloviyam okruzhayushej sredy ili dayut emu vozmozhnost razmnozhatsya bystree osobej dikogo tipa V etom sluchae mutaciya budet postepenno rasprostranyatsya v populyacii v hode nejtralnogo otbora Virusy genomy kotoryh predstavleny RNK mutiruyut ochen bystro chto neredko prinosit im polzu potomu chto immunnaya sistema effektivno raspoznayushaya odni varianty virusnyh antigenov okazyvaetsya bessilna protiv slegka izmenyonnyh V bolshih populyaciyah organizmov razmnozhayushihsya bespolym putyom naprimer E coli odnovremenno mozhet proishodit neskolko poleznyh mutacij Etot fenomen poluchil nazvanie angl i vyzyvaet konkurenciyu mezhdu mutaciyami Vyrozhdennost Gruppirovka kodonov po molyarnomu kolichestvu os Y i gidrofobnosti aminokislot os H Bolee podrobnaya shema na Vikisklade Sposobnost raznyh kodonov kodirovat odnu aminokislotu nazyvaetsya vyrozhdennostyu koda Vpervye geneticheskij kod nazvali angl Nirenberg i Bernfild Odnako nesmotrya na vyrozhdennost v geneticheskom kode polnostyu otsutstvuet dvusmyslennost Naprimer kodony GAA i GAG oba kodiruyut glutamat no ni odin iz nih ne kodiruet odnovremenno eshyo kakuyu to aminokislotu Kodony sootvetstvuyushie odnoj aminokislote mogut razlichatsya po lyubym poziciyam odnako chashe vsego dve pervye pozicii u takih kodonov sovpadayut a razlichaetsya tolko poslednyaya Blagodarya etomu mutaciya zatronuvshaya tretyu poziciyu kodona skoree vsego ne skazhetsya na belkovom produkte Eta osobennost mozhet byt obyasnena gipotezoj neodnoznachnoj pary osnovanij predlozhennoj Fransisom Krikom Soglasno etoj gipoteze tretij nukleotid v kodone DNK mozhet byt ne polnostyu komplementaren antikodonu tRNK dlya kompensacii nesootvetstviya chisla tipov tRNK chislu kodonov Kodony blizkih po fiziko himicheskim svojstvam aminokislot takzhe neredko pohozhi blagodarya chemu mutacii ne privodyat k znachitelnym narusheniyam belkovoj struktury Tak kodony NUN N lyuboj nukleotid obychno kodiruyut gidrofobnye aminokisloty NCN kodiruyut malenkie aminokisloty s umerennoj gidrofobnostyu a NAN kodiruyut gidrofilnye aminokisloty srednego razmera Geneticheskij kod ustroen nastolko optimalno s tochki zreniya gidrofobnosti chto matematicheskij analiz pri pomoshi singulyarnogo razlozheniya 12 peremennyh 4 nukleotida na 3 pozicii dayot znachimuyu korrelyaciyu 0 95 dlya predskazaniya gidrofobnosti aminokisloty po eyo kodonu Na vosem aminokislot mutacii po tretim poziciyam ne vliyayut voobshe a mutacii po vtoroj pozicii kak pravilo privodyat k zamene na aminokislotu s sovershenno drugimi fiziko himicheskimi svojstvami Odnako naibolshee vliyanie na belkovyj produkt imeyut mutacii po pervym poziciyam Tak mutacii privodyashie k zamene zaryazhennoj aminokisloty na aminokislotu s protivopolozhnym zaryadom mogut zatragivat tolko pervuyu poziciyu a vtoruyu nikogda Takaya zamena zaryada veroyatnee vsego okazhet silnyj effekt na strukturu belka Standartnyj geneticheskij kodV tablice nizhe predstavlen geneticheskij kod obshij dlya bolshinstva pro i eukariot V tablice privedeny vse 64 kodona i ukazany sootvetstvuyushie aminokisloty Poryadok osnovanij ot 5 k 3 koncu mRNK Privedeny tryohbukvennye i odnobukvennye oboznacheniya aminokislot nepolyarnyj polyarnyj osnovnyj kislotnyj stop kodon Standartnyj geneticheskij kod 1 e osnovanie 2 e osnovanie 3 e osnovanieU C A GU UUU Phe F Fenilalanin UCU Ser S Serin UAU Tyr Y Tirozin UGU Cys C Cistein UUUC UCC UAC UGC CUUA Leu L Lejcin UCA UAA Stop ohra B UGA Stop opal B AUUG A UCG UAG Stop yantar B UGG Trp W Triptofan GC CUU CCU Pro P Prolin CAU His H Gistidin CGU Arg R Arginin UCUC CCC CAC CGC CCUA CCA CAA Gln Q Glutamin CGA ACUG A CCG CAG CGG GA AUU Ile I Izolejcin ACU Thr T Treonin AAU Asn N Asparagin AGU Ser S Serin UAUC ACC AAC AGC CAUA ACA AAA Lys K Lizin AGA Arg R Arginin AAUG A Met M Metionin ACG AAG AGG GG GUU Val V Valin GCU Ala A Alanin GAU Asp D Asparaginovaya kislota GGU Gly G Glicin UGUC GCC GAC GGC CGUA GCA GAA Glu E Glutaminovaya kislota GGA AGUG GCG GAG GGG GA Kodon AUG kodiruet metionin i odnovremenno yavlyaetsya sajtom iniciacii translyacii pervyj kodon AUG v kodiruyushej oblasti mRNK sluzhit nachalom sinteza belka Drugie start kodony CUG UUG i dr redko ispolzuyutsya v eukarioticheskih yadernyh genomah no dovolno chasto v prokariotah mitohondriyah i plastidah B Istoricheskaya podoplyoka dlya oboznacheniya tryoh tipov stop kodonov kak yantar UAG ohra UAA i opal umbra UGA opisana v state Stop kodon Obratnaya tablica ukazany kodony dlya kazhdoj aminokisloty a takzhe stop kodony Ala A GCU GCC GCA GCG Leu L UUA UUG CUU CUC CUA CUGArg R CGU CGC CGA CGG AGA AGG Lys K AAA AAGAsn N AAU AAC Met M AUGAsp D GAU GAC Phe F UUU UUCCys C UGU UGC Pro P CCU CCC CCA CCGGln Q CAA CAG Ser S UCU UCC UCA UCG AGU AGCGlu E GAA GAG Thr T ACU ACC ACA ACGGly G GGU GGC GGA GGG Trp W UGGHis H CAU CAC Tyr Y UAU UACIle I AUU AUC AUA Val V GUU GUC GUA GUGSTART AUG STOP UAG UGA UAAAlternativnye geneticheskie kodyNestandartnye aminokisloty V nekotoryh belkah nestandartnye aminokisloty kodiruyutsya stop kodonami v zavisimosti ot nalichiya osoboj signalnoj posledovatelnosti v mRNK Naprimer stop kodon UGA mozhet kodirovat selenocistein a UAG pirrolizin Selenocistein i pirrolizin rassmatrivayut kak 21 yu i 22 yu proteinogennuyu aminokislotu sootvetstvenno V otlichie ot selenocisteina u pirrolizina est sobstvennaya aminoacil tRNK sintetaza Hotya obychno geneticheskij kod ispolzuemyj kletkami odnogo organizma fiksirovan arheya angl mozhet pereklyuchatsya s 20 aminokislotnogo koda na 21 aminokislotnyj vklyuchaya pirrolizin pri raznyh usloviyah rosta Variacii Shema mitohondrialnogo geneticheskogo koda Globobulimina pseudospinescens Pokazany 64 kodona sleva napravo predskazannye otkloneniya ot standartnogo geneticheskogo koda izobrazheny krasnym Krasnoj liniej pokazany stop kodony Vysota bukvy sootvetstvuyushej aminokislote proporcionalna chastote sootvetstviya etoj aminokisloty dannomu kodonu Sushestvovanie otklonenij ot standartnogo geneticheskogo koda predskazyvalos eshyo v 1970 h Pervoe otklonenie bylo opisano v 1979 godu v mitohondriyah cheloveka Vposledstvii bylo opisano eshyo neskolko alternativnyh geneticheskih kodov slegka otlichayushihsya ot standartnogo v tom chisle alternativnye mitohondrialnye kody Naprimer u bakterij roda Mycoplasma stop kodon UGA kodiruet triptofan a u drozhzhej iz tak nazyvaemoj CTG klady v tom chisle patogennogo vida Candida albicans kodon CUG kodiruet serin a ne lejcin kak v standartnom geneticheskom kode Poskolku virusy ispolzuyut tot zhe geneticheskij kod chto i kletki hozyaeva otkloneniya ot standartnogo geneticheskogo koda mogut narushit razmnozhenie virusov Vprochem nekotorye virusy naprimer virusy roda angl ispolzuyut tot zhe alternativnyj geneticheskij kod chto i organizm hozyain U bakterij i arhej GUG i UUG neredko vystupayut start kodonami Nekotorye otkloneniya ot standartnogo geneticheskogo koda est i v yadernom genome cheloveka tak v 4 mRNK fermenta malatdegidrogenazy odin iz stop kodonov kodiruet triptofan ili arginin Znachenie stop kodona zavisit ot ego okruzheniya Otkloneniya v geneticheskom kode organizma mozhno obnaruzhit esli najti v ego genome ochen konservativnye geny i sravnit ih kodony s sootvetstvuyushimi aminokislotami gomologichnyh belkov blizkorodstvennyh organizmov Po takomu principu rabotaet programma FACIL kotoraya rasschityvaet s kakoj chastotoj kazhdyj kodon sootvetstvuet toj ili inoj aminokislote a takzhe opredelyaet podderzhku stop kodona i predstavlyaet rezultat v vide logotipa LOGO Vprochem nesmotrya na vse perechislennye otlichiya geneticheskie kody ispolzuemye vsemi organizmami v obshih chertah shozhi V tablice nizhe perechisleny izvestnye na dannyj moment nestandartnye geneticheskie kody Naschityvayut 23 nestandartnyh geneticheskih koda prichyom naibolee chastym otlichiem ot standartnogo geneticheskogo koda yavlyaetsya prevrashenie stop kodona UGA v smyslovoj kodiruyushij triptofan Spisok nestandartnyh geneticheskih kodovBiohimicheskie svojstva aminokislot nepolyarnaya polyarnaya osnovnaya kislaya Terminaciya stop kodonSravnenie znachenij kodonov v alternativnyh i standartnom geneticheskih kodah Kod Tablica translyacii DNK kodon RNK kodon Translyaciya s dannym kodom Standartnaya translyaciya Primechaniya angl 1 Vklyuchaet tablicu translyacii 8 hloroplasty rastenij Mitohondrialnyj kod pozvonochnyh 2 AGA AGA Ter Arg R AGG AGG Ter Arg R ATA AUA Met M Ile I TGA UGA Trp W Ter angl 3 ATA AUA Met M Ile I CTT CUU Thr T Leu L CTC CUC Thr T Leu L CTA CUA Thr T Leu L CTG CUG Thr T Leu L TGA UGA Trp W Ter CGA CGA absent Arg R CGC CGC absent Arg R angl 4 TGA UGA Trp W Ter Vklyuchaet tablicu translyacii 7 kinetoplast angl 5 AGA AGA Ser S Arg R AGG AGG Ser S Arg R ATA AUA Met M Ile I TGA UGA Trp W Ter angl 6 TAA UAA Gln Q Ter TAG UAG Gln Q Ter angl 9 AAA AAA Asn N Lys K AGA AGA Ser S Arg R AGG AGG Ser S Arg R TGA UGA Trp W Ter angl 10 TGA UGA Cys C Ter angl 11 Sm tablicu translyacii 1 angl 12 CTG CUG Ser S Leu L angl 13 AGA AGA Gly G Arg R AGG AGG Gly G Arg R ATA AUA Met M Ile I TGA UGA Trp W Ter angl 14 AAA AAA Asn N Lys K AGA AGA Ser S Arg R AGG AGG Ser S Arg R TAA UAA Tyr Y Ter TGA UGA Trp W Ter angl 15 TAG UAG Gln Q Ter angl 16 TAG UAG Leu L Ter angl 21 TGA UGA Trp W Ter ATA AUA Met M Ile I AGA AGA Ser S Arg R AGG AGG Ser S Arg R AAA AAA Asn N Lys K angl 22 TCA UCA Ter Ser S TAG UAG Leu L Ter angl 23 TTA UUA Ter Leu L Shodna s tablicej translyacii 11 angl 24 AGA AGA Ser S Arg R AGG AGG Lys K Arg R TGA UGA Trp W Ter angl 25 TGA UGA Gly G Ter angl 26 CTG CUG Ala A Leu L angl 27 TAA UAA Gln Q Ter TAG UAG Gln Q Ter TGA UGA Ter ili Trp W Ter angl 28 TAA UAA Ter ili Gln Q Ter TAG UAG Ter ili Gln Q Ter TGA UGA Ter ili Trp W Ter angl 29 TAA UAA Tyr Y Ter TAG UAG Tyr Y Ter angl 30 TAA UAA Glu E Ter TAG UAG Glu E Ter angl 31 TAA UAA Ter ili Gln Q Ter TAG UAG Ter ili Gln Q Ter TGA UGA Trp W Ter Predpochtenie kodonovOsnovnaya statya Predpochtenie kodonov V genomah mnogih organizmov nablyudaetsya tak nazyvaemoe predpochtenie kodonov to est chastota vstrechaemosti vseh sinonimichnyh kodonov sootvetstvuyushih opredelyonnoj aminokislote ne ravna i dlya odnih kodonov vyshe chem dlya drugih Evolyucionnye osnovy vozniknoveniya predpochteniya kodonov neyasny Soglasno odnoj gipoteze rezhe vstrechayutsya te kodony kotorye naibolee chasto mutiruyut Drugaya gipoteza utverzhdaet chto predpochtenie kodonov reguliruetsya estestvennym otborom v polzu teh kotorye obespechivayut naibolshuyu effektivnost i tochnost ekspressii genov Predpochtenie kodonov v znachitelnoj mere svyazano s GC sostavom genoma i v nekotoryh sluchayah po GC sostavu mozhno dazhe predskazat chastotu ispolzovaniya kodonov S funkcionalnoj tochki zreniya predpochtenie kodonov svyazano s effektivnostyu i tochnostyu translyacii i sledovatelno urovnem ekspressii gena Struktura ribozima molekuly RNK vypolnyayushej funkciyu katalizaProishozhdenieOsnovnaya statya Gipoteza mira RNK V nastoyashee vremya naibolee obsheprinyatoj gipotezoj o proishozhdenii zhizni na Zemle yavlyaetsya gipoteza mira RNK Lyubaya model vozniknoveniya geneticheskogo koda ispolzuet gipotezu o peredache osnovnyh funkcij ot RNK fermentov ribozimov k belkovym fermentam Kak i predpolagaet gipoteza mira RNK tRNK poyavilis ranshe aminoacil tRNK sintetaz poetomu eti fermenty ne mogli okazat vliyanie na svojstva tRNK Geneticheskij kod poslednego universalnogo obshego predka LUCA byl osnovan veroyatnee vsego na DNK a ne RNK Geneticheskij kod sostoyal iz tryohnukleotidnyh kodonov i vsego bylo vozmozhno 64 razlichnyh kodona Poskolku dlya postroeniya belkov ispolzovalos tolko 20 aminokislot nekotorye aminokisloty kodirovalis neskolkimi kodonami Esli by sootvetstvie mezhdu kodonami i aminokislotami bylo sluchajnym v prirode sushestvovalo by 1 5 1084 geneticheskih kodov Eto chislo poluchilos v rezultate raschyota kolichestva sposobov kotorymi mozhno 21 predmet 20 kodonov kodiruyushih aminokisloty i odin stop kodon razlozhit v 64 korziny tak chtoby kazhdyj predmet byl ispolzovan po krajnej mere edinozhdy Odnako sootvetstviya kodonov i aminokislot nesluchajny Aminokisloty kotorye imeyut obshij put biosinteza kak pravilo imeyut obshuyu pervuyu poziciyu kodonov Etot fakt mozhet byt perezhitkom rannego bolee prostogo geneticheskogo koda kotoryj soderzhal menshe aminokislot chem sovremennyj i postepenno vklyuchil v svoj sostav vse 20 aminokislot Kodony aminokislot so shozhimi fiziko himicheskimi svojstvami takzhe kak pravilo pohozhi chto smyagchaet posledstviya tochechnyh mutacij i narushenij translyacii Poskolku geneticheskij kod nesluchaen pravdopodobnaya gipoteza o ego vozniknovenii dolzhna obyasnyat takie svojstva standartnogo geneticheskogo koda kak otsutstvie kodonov dlya D aminokislot vklyuchenie vsego lish 20 aminokislot iz vozmozhnyh 64 ogranichenie sinonimichnyh zamen tretej poziciej kodonov funkcionirovanie v kachestve stop kodonov imenno kodonov UAG UGA i UAA Sushestvuyut tri osnovnye gipotezy proishozhdeniya geneticheskogo koda Kazhdaya iz nih predstavlena mnozhestvom modelej mnogie modeli gibridny Zamorozhennaya sluchajnost geneticheskij kod voznik sluchajno i v takom vide zakrepilsya Vozmozhno drevnie ribozimy podobnye sovremennym tRNK imeli raznoe srodstvo k aminokislotam prichyom kodony iz raznyh chastej odnogo i togo zhe ribozima mogli obladat naibolshim srodstvom k raznym aminokislotam Posle togo kak poyavilis pervye funkcionalnye peptidy lyuboe izmenenie geneticheskogo koda bylo by letalnym poetomu on okazalsya zamorozhen Stereohimicheskoe srodstvo geneticheskij kod opredelyaetsya vysokim srodstvom kazhdoj aminokisloty s sootvetstvuyushimi ej kodonami i antikodonami Srodstvo aminokisloty i antikodona oznachaet chto predkovym tRNK sootvetstvovali te aminokisloty s kotorymi oni svyazyvalis s naibolshim srodstvom V hode evolyucii sootvetstvie antikodonov i aminokislot zamenilos sootvetstviem aminoacil tRNK sintetaz i aminokislot Optimalnost geneticheskij kod prodolzhal nekotoroe vremya izmenyatsya posle svoego poyavleniya poetomu sovremennyj kod obespechivaet maksimalnuyu prisposoblennost i minimiziruet posledstviya mutacij to est yavlyaetsya luchshim iz vozmozhnyh geneticheskih kodov PrimechaniyaTuranov A A Lobanov A V Fomenko D E Morrison H G Sogin M L Klobutcher L A Hatfield D L Gladyshev V N Genetic code supports targeted insertion of two amino acids by one codon angl Science New York N Y 2009 9 January vol 323 no 5911 P 259 261 doi 10 1126 science 1164748 PMID 19131629 ispravit Shu J J A new integrated symmetrical table for genetic codes angl Bio Systems 2017 January vol 151 P 21 26 doi 10 1016 j biosystems 2016 11 004 PMID 27887904 ispravit Crick Francis Chapter 8 The genetic code What Mad Pursuit A Personal View of Scientific Discovery angl Basic Books 1990 P 89 101 ISBN 978 0 465 09138 6 NIRENBERG MW MATTHAEI JH The dependence of cell free protein synthesis in E coli upon naturally occurring or synthetic polyribonucleotides angl Proceedings Of The National Academy Of Sciences Of The United States Of America 1961 15 October vol 47 P 1588 1602 PMID 14479932 ispravit GARDNER RS WAHBA AJ BASILIO C MILLER RS LENGYEL P SPEYER JF Synthetic polynucleotides and the amino acid code VII angl Proceedings Of The National Academy Of Sciences Of The United States Of America 1962 15 December vol 48 P 2087 2094 PMID 13946552 ispravit WAHBA AJ GARDNER RS BASILIO C MILLER RS SPEYER JF LENGYEL P Synthetic polynucleotides and the amino acid code VIII angl Proceedings Of The National Academy Of Sciences Of The United States Of America 1963 15 January vol 49 P 116 122 PMID 13998282 ispravit The Nobel Prize in Physiology or Medicine 1959 Press release The Royal Swedish Academy of Science 1959 26 dekabrya 2018 Data obrasheniya 27 fevralya 2010 The Nobel Prize in Physiology or Medicine 1959 was awarded jointly to Severo Ochoa and Arthur Kornberg for their discovery of the mechanisms in the biological synthesis of ribonucleic acid and deoxyribonucleic acid Xie J Schultz P G Adding amino acids to the genetic repertoire angl Current Opinion In Chemical Biology 2005 December vol 9 no 6 P 548 554 doi 10 1016 j cbpa 2005 10 011 PMID 16260173 ispravit Wang Q Parrish A R Wang L Expanding the genetic code for biological studies angl Chemistry amp Biology 2009 27 March vol 16 no 3 P 323 336 doi 10 1016 j chembiol 2009 03 001 PMID 19318213 ispravit Simon Matthew Emergent Computation Emphasizing Bioinformatics angl Springer Science amp Business Media 2005 P 105 106 ISBN 978 0 387 22046 8 Hoesl M G Oehm S Durkin P Darmon E Peil L Aerni H R Rappsilber J Rinehart J Leach D Soll D Budisa N Chemical Evolution of a Bacterial Proteome angl Angewandte Chemie International Ed In English 2015 17 August vol 54 no 34 P 10030 10034 doi 10 1002 anie 201502868 PMID 26136259 ispravit First stable semisynthetic organism created KurzweilAI neopr www kurzweilai net 3 fevralya 2017 Data obrasheniya 9 fevralya 2017 10 fevralya 2017 goda Zhang Y Lamb B M Feldman A W Zhou A X Lavergne T Li L Romesberg F E A semisynthetic organism engineered for the stable expansion of the genetic alphabet angl Proceedings Of The National Academy Of Sciences Of The United States Of America 2017 7 February vol 114 no 6 P 1317 1322 doi 10 1073 pnas 1616443114 PMID 28115716 ispravit Han S Yang A Lee S Lee H W Park C B Park H S Expanding the genetic code of Mus musculus angl Nature Communications 2017 21 February vol 8 P 14568 14568 doi 10 1038 ncomms14568 PMID 28220771 ispravit Cartwright R A Graur D The multiple personalities of Watson and Crick strands angl Biology Direct 2011 8 February vol 6 P 7 doi 10 1186 1745 6150 6 7 PMID 21303550 ispravit King Robert C Mulligan Pamela Stansfield William A Dictionary of Genetics neopr OUP USA 2013 S 608 ISBN 978 0 19 976644 4 ot 8 aprelya 2022 na Wayback Machine Tse H Cai J J Tsoi H W Lam E P Yuen K Y Natural selection retains overrepresented out of frame stop codons against frameshift peptides in prokaryotes angl BMC Genomics 2010 9 September vol 11 P 491 doi 10 1186 1471 2164 11 491 PMID 20828396 ispravit Touriol C Bornes S Bonnal S Audigier S Prats H Prats A C Vagner S Generation of protein isoform diversity by alternative initiation of translation at non AUG codons angl Biology Of The Cell 2003 May vol 95 no 3 4 P 169 178 PMID 12867081 ispravit Maloy S How nonsense mutations got their names neopr Microbial Genetics Course San Diego State University 29 noyabrya 2003 Data obrasheniya 10 marta 2010 16 noyabrya 2014 goda Alberts i dr 2013 s 586 Protacio R U Storey A J Davidson M K Wahls W P Nonsense codon suppression in fission yeast due to mutations of tRNA Ser 11 and translation release factor Sup35 eRF3 angl Current Genetics 2015 May vol 61 no 2 P 165 173 doi 10 1007 s00294 014 0465 7 PMID 25519804 ispravit Schueren F Thoms S Functional Translational Readthrough A Systems Biology Perspective angl PLoS Genetics 2016 August vol 12 no 8 P e1006196 1006196 doi 10 1371 journal pgen 1006196 PMID 27490485 ispravit Dabrowski Maciej Bukowy Bieryllo Zuzanna Zietkiewicz Ewa Translational readthrough potential of natural termination codons in eucaryotes The impact of RNA sequence angl RNA Biology 2015 15 July vol 12 no 9 P 950 958 ISSN 1547 6286 doi 10 1080 15476286 2015 1068497 ispravit Povolotskaya I S Kondrashov F A Ledda A Vlasov P K Stop codons in bacteria are not selectively equivalent angl Biology Direct 2012 13 September vol 7 P 30 doi 10 1186 1745 6150 7 30 PMID 22974057 ispravit Korkmaz G Holm M Wiens T Sanyal S Comprehensive analysis of stop codon usage in bacteria and its correlation with release factor abundance angl The Journal Of Biological Chemistry 2014 31 October vol 289 no 44 P 30334 30342 doi 10 1074 jbc M114 606632 PMID 25217634 ispravit Escherichia coli str K 12 substr MG1655 complete genome Genbank Accession Number U00096 neopr GenBank NCBI Data obrasheniya 27 yanvarya 2013 16 yanvarya 2013 goda Wong T Y Fernandes S Sankhon N Leong P P Kuo J Liu J K Role of premature stop codons in bacterial evolution angl Journal Of Bacteriology 2008 October vol 190 no 20 P 6718 6725 doi 10 1128 JB 00682 08 PMID 18708500 ispravit Papp L V Lu J Holmgren A Khanna K K From selenium to selenoproteins synthesis identity and their role in human health angl Antioxidants amp Redox Signaling 2007 July vol 9 no 7 P 775 806 doi 10 1089 ars 2007 1528 PMID 17508906 ispravit Namy O Rousset J P Napthine S Brierley I Reprogrammed genetic decoding in cellular gene expression angl Molecular Cell 2004 30 January vol 13 no 2 P 157 168 PMID 14759362 ispravit Schueren F Lingner T George R Hofhuis J Dickel C Gartner J Thoms S Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals angl ELife 2014 23 September vol 3 P e03640 03640 doi 10 7554 eLife 03640 PMID 25247702 ispravit Spontaneous mutations An Introduction to Genetic Analysis neopr Griffiths Anthony J F Miller Jeffrey H Suzuki David T Lewontin Richard C Gelbart 7th New York angl 2000 ISBN 978 0 7167 3520 5 Freisinger E Grollman A P Miller H Kisker C Lesion in tolerance reveals insights into DNA replication fidelity angl The EMBO Journal 2004 7 April vol 23 no 7 P 1494 1505 doi 10 1038 sj emboj 7600158 PMID 15057282 ispravit Krebs Goldshtejn Kilpatrik 2017 s 31 Chang J C Kan Y W beta 0 thalassemia a nonsense mutation in man angl Proceedings Of The National Academy Of Sciences Of The United States Of America 1979 June vol 76 no 6 P 2886 2889 PMID 88735 ispravit Boillee S Vande Velde C Cleveland D W ALS a disease of motor neurons and their nonneuronal neighbors angl Neuron 2006 5 October vol 52 no 1 P 39 59 doi 10 1016 j neuron 2006 09 018 PMID 17015226 ispravit Isbrandt D Hopwood J J von Figura K Peters C Two novel frameshift mutations causing premature stop codons in a patient with the severe form of Maroteaux Lamy syndrome angl Human Mutation 1996 Vol 7 no 4 P 361 363 doi 10 1002 SICI 1098 1004 1996 7 4 lt 361 AID HUMU12 gt 3 0 CO 2 0 PMID 8723688 ispravit Crow J F How much do we know about spontaneous human mutation rates angl Environmental And Molecular Mutagenesis 1993 Vol 21 no 2 P 122 129 PMID 8444142 ispravit Lewis Ricki Human Genetics Concepts and Applications angl 6th Boston Mass McGraw Hill Education 2005 P 227 228 ISBN 978 0 07 111156 0 Sawyer S A Parsch J Zhang Z Hartl D L Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila angl Proceedings Of The National Academy Of Sciences Of The United States Of America 2007 17 April vol 104 no 16 P 6504 6510 doi 10 1073 pnas 0701572104 PMID 17409186 ispravit Bridges K R Malaria and the Red Cell neopr Harvard 2002 27 noyabrya 2011 goda neopr Data obrasheniya 2 sentyabrya 2018 Arhivirovano iz originala 27 noyabrya 2011 goda Drake J W Holland J J Mutation rates among RNA viruses angl Proceedings Of The National Academy Of Sciences Of The United States Of America 1999 23 November vol 96 no 24 P 13910 13913 PMID 10570172 ispravit Holland J Spindler K Horodyski F Grabau E Nichol S VandePol S Rapid evolution of RNA genomes angl Science New York N Y 1982 26 March vol 215 no 4540 P 1577 1585 PMID 7041255 ispravit de Visser J A Rozen D E Clonal interference and the periodic selection of new beneficial mutations in Escherichia coli angl Genetics 2006 April vol 172 no 4 P 2093 2100 doi 10 1534 genetics 105 052373 PMID 16489229 ispravit Krebs Goldshtejn Kilpatrik 2017 s 689 691 Biochemistry neopr Mathews Christopher K Van Holde K E Appling Dean Anthony Cahill Spencer 4th Toronto Prentice Hall 2012 S 1181 ISBN 978 0 13 800464 4 Voet Donald Voet Judith Biochemistry neopr 4th Hoboken NJ John Wiley amp Sons 2011 S 1360 1361 ISBN 9780470570951 Michel Beyerle Maria Elisabeth Reaction centers of photosynthetic bacteria Feldafing II Meeting angl Springer Verlag 1990 ISBN 978 3 540 53420 4 ot 8 aprelya 2022 na Wayback Machine Fricke M Gerst R Ibrahim B Niepmann M Marz M Global importance of RNA secondary structures in protein coding sequences angl Bioinformatics 2018 7 August doi 10 1093 bioinformatics bty678 PMID 30101307 ispravit Nakamoto T Evolution and the universality of the mechanism of initiation of protein synthesis angl Gene 2009 1 March vol 432 no 1 2 P 1 6 doi 10 1016 j gene 2008 11 001 PMID 19056476 ispravit Elzanowski A Ostell J The Genetic Codes neopr NCBI Data obrasheniya 3 iyunya 2023 Krzycki J A The direct genetic encoding of pyrrolysine angl Current Opinion In Microbiology 2005 December vol 8 no 6 P 706 712 doi 10 1016 j mib 2005 10 009 PMID 16256420 ispravit Prat L Heinemann I U Aerni H R Rinehart J O Donoghue P Soll D Carbon source dependent expansion of the genetic code in bacteria angl Proceedings Of The National Academy Of Sciences Of The United States Of America 2012 18 December vol 109 no 51 P 21070 21075 doi 10 1073 pnas 1218613110 PMID 23185002 ispravit Crick F H C Orgel L E Directed panspermia angl Icarus 1973 July vol 19 no 3 P 341 346 ISSN 0019 1035 doi 10 1016 0019 1035 73 90110 3 ispravit Barrell B G Bankier A T Drouin J A different genetic code in human mitochondria angl Nature 1979 8 November vol 282 no 5735 P 189 194 PMID 226894 ispravit Jukes T H Osawa S The genetic code in mitochondria and chloroplasts angl Experientia 1990 1 December vol 46 no 11 12 P 1117 1126 PMID 2253709 ispravit Fitzpatrick D A Logue M E Stajich J E Butler G A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis angl BMC Evolutionary Biology 2006 22 November vol 6 P 99 99 doi 10 1186 1471 2148 6 99 PMID 17121679 ispravit Santos M A Tuite M F The CUG codon is decoded in vivo as serine and not leucine in Candida albicans angl Nucleic Acids Research 1995 11 May vol 23 no 9 P 1481 1486 PMID 7784200 ispravit Butler G Rasmussen M D Lin M F Santos M A Sakthikumar S Munro C A Rheinbay E Grabherr M Forche A Reedy J L Agrafioti I Arnaud M B Bates S Brown A J Brunke S Costanzo M C Fitzpatrick D A de Groot P W Harris D Hoyer L L Hube B Klis F M Kodira C Lennard N Logue M E Martin R Neiman A M Nikolaou E Quail M A Quinn J Santos M C Schmitzberger F F Sherlock G Shah P Silverstein K A Skrzypek M S Soll D Staggs R Stansfield I Stumpf M P Sudbery P E Srikantha T Zeng Q Berman J Berriman M Heitman J Gow N A Lorenz M C Birren B W Kellis M Cuomo C A Evolution of pathogenicity and sexual reproduction in eight Candida genomes angl Nature 2009 4 June vol 459 no 7247 P 657 662 doi 10 1038 nature08064 PMID 19465905 ispravit Witzany G Crucial steps to life From chemical reactions to code using agents angl Bio Systems 2016 February vol 140 P 49 57 doi 10 1016 j biosystems 2015 12 007 PMID 26723230 ispravit Taylor D J Ballinger M J Bowman S M Bruenn J A Virus host co evolution under a modified nuclear genetic code angl PeerJ 2013 Vol 1 P e50 50 doi 10 7717 peerj 50 PMID 23638388 ispravit Elzanowski A Ostell J The Genetic Codes neopr National Center for Biotechnology Information NCBI 7 aprelya 2008 Data obrasheniya 10 marta 2010 20 avgusta 2016 goda Hofhuis J Schueren F Notzel C Lingner T Gartner J Jahn O Thoms S The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code angl Open Biology 2016 November vol 6 no 11 doi 10 1098 rsob 160246 PMID 27881739 ispravit Dutilh B E Jurgelenaite R Szklarczyk R van Hijum S A Harhangi H R Schmid M de Wild B Francoijs K J Stunnenberg H G Strous M Jetten M S Op den Camp H J Huynen M A FACIL Fast and Accurate Genetic Code Inference and Logo angl Bioinformatics 2011 15 July vol 27 no 14 P 1929 1933 doi 10 1093 bioinformatics btr316 PMID 21653513 ispravit Kubyshkin V Acevedo Rocha C G Budisa N On universal coding events in protein biogenesis angl Bio Systems 2018 February vol 164 P 16 25 doi 10 1016 j biosystems 2017 10 004 PMID 29030023 ispravit Elzanowski Andrzej Jim Ostell The Genetic Codes neopr National Center for Biotechnology Information 7 iyulya 2010 Data obrasheniya 6 maya 2013 18 maya 2013 goda Watanabe Kimitsuna Suzuki Tsutomu Genetic Code and its Variants angl Encyclopedia of Life Sciences 2001 19 April ISBN 047001590X doi 10 1038 npg els 0000810 ispravit Koonin E V Novozhilov A S Origin and Evolution of the Universal Genetic Code angl Annual Review Of Genetics 2017 27 November vol 51 P 45 62 doi 10 1146 annurev genet 120116 024713 PMID 28853922 ispravit Hershberg R Petrov D A Selection on codon bias angl Annual review of genetics 2008 Vol 42 P 287 299 doi 10 1146 annurev genet 42 110807 091442 PMID 18983258 ispravit Behura S K Severson D W Codon usage bias causative factors quantification methods and genome wide patterns with emphasis on insect genomes angl Biological reviews of the Cambridge Philosophical Society 2013 Vol 88 no 1 P 49 61 doi 10 1111 j 1469 185X 2012 00242 x PMID 22889422 ispravit Shields D C Sharp P M Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases angl Nucleic acids research 1987 Vol 15 no 19 P 8023 8040 PMID 3118331 ispravit Shields D C Sharp P M Higgins D G Wright F Silent sites in Drosophila genes are not neutral evidence of selection among synonymous codons angl Molecular biology and evolution 1988 Vol 5 no 6 P 704 716 PMID 3146682 ispravit Chen S L Lee W Hottes A K Shapiro L McAdams H H Codon usage between genomes is constrained by genome wide mutational processes angl Proceedings of the National Academy of Sciences of the United States of America 2004 Vol 101 no 10 P 3480 3485 doi 10 1073 pnas 0307827100 PMID 14990797 ispravit Akashi H Synonymous codon usage in Drosophila melanogaster natural selection and translational accuracy angl Genetics 1994 Vol 136 no 3 P 927 935 PMID 8005445 ispravit Sharp P M Bailes E Grocock R J Peden J F Sockett R E Variation in the strength of selected codon usage bias among bacteria angl Nucleic acids research 2005 Vol 33 no 4 P 1141 1153 doi 10 1093 nar gki242 PMID 15728743 ispravit Ribas de Pouplana L Turner R J Steer B A Schimmel P Genetic code origins tRNAs older than their synthetases angl Proceedings Of The National Academy Of Sciences Of The United States Of America 1998 15 September vol 95 no 19 P 11295 11300 PMID 9736730 ispravit Russell J Garwood Patterns In Palaeontology The first 3 billion years of evolution angl Palaeontology Online journal 2012 Vol 2 no 11 P 1 14 26 iyunya 2015 goda Wachtershauser Gunter Towards a Reconstruction of Ancestral Genomes by Gene Cluster Alignment angl Systematic and Applied Microbiology 1998 December vol 21 no 4 P 473 477 ISSN 0723 2020 doi 10 1016 S0723 2020 98 80058 1 ispravit Gregory Michael What is Life neopr Clinton College Arhivirovano 13 dekabrya 2007 goda Pace N R The universal nature of biochemistry angl Proceedings of the National Academy of Sciences of the United States of America 2001 Vol 98 no 3 P 805 808 doi 10 1073 pnas 98 3 805 PMID 11158550 ispravit Wachtershauser G From pre cells to Eukarya a tale of two lipids angl Molecular microbiology 2003 Vol 47 no 1 P 13 22 PMID 12492850 ispravit Yarus Michael Life from an RNA World The Ancestor Within angl Harvard University Press 2010 ISBN 978 0 674 05075 4 Mathematica function for possible arrangements of items in bins Online Technical Discussion Groups Wolfram Community angl community wolfram com Data obrasheniya 3 fevralya 2017 Arhivirovano 5 fevralya 2017 goda Freeland S J Hurst L D The genetic code is one in a million angl Journal Of Molecular Evolution 1998 September vol 47 no 3 P 238 248 PMID 9732450 ispravit Taylor F J Coates D The code within the codons angl Bio Systems 1989 Vol 22 no 3 P 177 187 PMID 2650752 ispravit Di Giulio M The extension reached by the minimization of the polarity distances during the evolution of the genetic code angl Journal Of Molecular Evolution 1989 October vol 29 no 4 P 288 293 PMID 2514270 ispravit Wong J T Role of minimization of chemical distances between amino acids in the evolution of the genetic code angl Proceedings Of The National Academy Of Sciences Of The United States Of America 1980 February vol 77 no 2 P 1083 1086 PMID 6928661 ispravit Erives A A model of proto anti codon RNA enzymes requiring L amino acid homochirality angl Journal Of Molecular Evolution 2011 August vol 73 no 1 2 P 10 22 doi 10 1007 s00239 011 9453 4 PMID 21779963 ispravit Freeland S J Knight R D Landweber L F Hurst L D Early fixation of an optimal genetic code angl Molecular Biology And Evolution 2000 April vol 17 no 4 P 511 518 doi 10 1093 oxfordjournals molbev a026331 PMID 10742043 ispravit Crick F H The origin of the genetic code angl Journal Of Molecular Biology 1968 December vol 38 no 3 P 367 379 PMID 4887876 ispravit Hopfield J J Origin of the genetic code a testable hypothesis based on tRNA structure sequence and kinetic proofreading angl Proceedings Of The National Academy Of Sciences Of The United States Of America 1978 September vol 75 no 9 P 4334 4338 PMID 279919 ispravit LiteraturaAlberts B Molekulyarnaya biologiya kletki M Izhevsk NIC Regulyarnaya i haoticheskaya dinamika Institut kompyuternyh issledovanij 2013 T 1 S 586 808 s ISBN 978 5 4344 0112 8 Krebs Dzh Goldshtejn E Kilpatrik S Geny po Lyuinu M Laboratoriya znanij 2017 919 s ISBN 978 5 906828 24 8 Eta statya vhodit v chislo izbrannyh statej russkoyazychnogo razdela Vikipedii
Вершина