Поддерживать
www.wikidata.ru-ru.nina.az
V matematike celaya chast veshestvennogo chisla x displaystyle x okruglenie x displaystyle x do blizhajshego celogo v menshuyu storonu Celaya chast chisla takzhe nazyvaetsya ante fr entier ili pol angl floor Naryadu s polom sushestvuet parnaya funkciya potolok angl ceiling okruglenie x displaystyle x do blizhajshego celogo v bolshuyu storonu Grafik funkcii pol celaya chast chisla Grafik funkcii potolok Oboznacheniya i primeryVpervye kvadratnye skobki x displaystyle x dlya oboznacheniya celoj chasti chisla x displaystyle x ispolzoval Gauss v 1808 godu v svoyom dokazatelstve zakona kvadratichnoj vzaimnosti Eto oboznachenie schitalos standartnym poka Kennet Ajverson v svoej knige A Programming Language opublikovannoj v 1962 godu ne predlozhil okruglenie chisla x displaystyle x do blizhajshego celogo v menshuyu i bolshuyu storony nazyvat pol i potolok x displaystyle x i oboznachat x displaystyle lfloor x rfloor i x displaystyle lceil x rceil sootvetstvenno V sovremennoj matematike ispolzuyutsya oba oboznacheniya x displaystyle x i x displaystyle lfloor x rfloor odnako vsyo bolee i bolee preimushestvenno primenyayut terminologiyu i oboznacheniya Ajversona odna iz prichin sostoit v tom chto dlya otricatelnyh chisel ponyatie celaya chast chisla uzhe yavlyaetsya neodnoznachnym Naprimer celaya chast chisla 2 7 ravna 2 no na to kak opredelit celuyu chast chisla 2 7 uzhe vozmozhny dve tochki zreniya po opredeleniyu dannomu v etoj state x x 3 displaystyle x equiv lfloor x rfloor 3 odnako v nekotoryh kalkulyatorah funkciya celoj chasti INT dlya otricatelnyh chisel opredelyaetsya kak INT x INT x tak chto INT 2 7 2 Terminologiya Ajversona lishena etih nedostatkov 2 7 2 2 7 3 2 7 3 2 7 2 displaystyle begin matrix lfloor 2 7 rfloor 2 amp lfloor 2 7 rfloor 3 lceil 2 7 rceil 3 amp lceil 2 7 rceil 2 end matrix Sm takzhe OkruglenieOpredeleniyaFunkciya pol x x displaystyle lfloor cdot rfloor colon x mapsto lfloor x rfloor opredelyaetsya kak naibolshee celoe menshee ili ravnoe x displaystyle x x max n Z n x displaystyle lfloor x rfloor max n in mathbb Z mid n leqslant x Funkciya potolok x x displaystyle lceil cdot rceil colon x mapsto lceil x rceil eto naimenshee celoe bolshee ili ravnoe x displaystyle x x min n Z n x displaystyle lceil x rceil min n in mathbb Z mid n geqslant x Eti opredeleniya ekvivalentny sleduyushim neravenstvam gde n celoe chislo x n n x lt n 1 x 1 lt n x x n n 1 lt x n x n lt x 1 displaystyle begin matrix lfloor x rfloor n amp Longleftrightarrow amp n leqslant x lt n 1 amp Longleftrightarrow amp x 1 lt n leqslant x lceil x rceil n amp Longleftrightarrow amp n 1 lt x leqslant n amp Longleftrightarrow amp x leqslant n lt x 1 end matrix SvojstvaV formulah zapisannyh nizhe bukvami x displaystyle x i y displaystyle y oboznacheny veshestvennye chisla a bukvami n displaystyle n i m displaystyle m celye Pol i potolok kak funkcii veshestvennoj peremennoj Funkcii pol i potolok otobrazhayut mnozhestvo veshestvennyh chisel v mnozhestvo celyh chisel R Z R Z displaystyle lfloor cdot rfloor colon mathbb R to mathbb Z quad lceil cdot rceil colon mathbb R to mathbb Z quad Pol i potolok kusochno postoyannye funkcii Funkcii pol i potolok razryvny vo vseh celochislennyh tochkah terpyat razryvy pervogo roda so skachkom ravnym edinice Pri etom funkciya pol yavlyaetsya polunepreryvnoj sverhu i nepreryvnoj sprava Funkciya potolok yavlyaetsya polunepreryvnoj snizu i nepreryvnoj sleva Svyaz funkcij pol i potolok Dlya proizvolnogo chisla x displaystyle x verno neravenstvo x x x displaystyle lfloor x rfloor leqslant x leqslant lceil x rceil Dlya celogo x displaystyle x pol i potolok sovpadayut x x x Z x x displaystyle lfloor x rfloor x quad Longleftrightarrow quad x in mathbb Z quad Longleftrightarrow quad lceil x rceil x Esli x displaystyle x ne celoe to znachenie funkcii potolok na edinicu bolshe znacheniya funkcii pol x x 1 x Z0 x Z displaystyle lceil x rceil lfloor x rfloor begin cases 1 amp x notin mathbb Z 0 amp x in mathbb Z end cases Funkcii pol i potolok yavlyayutsya otrazheniyami drug druga ot obeih osej x x x x displaystyle lfloor x rfloor lceil x rceil quad lceil x rceil lfloor x rfloor Pol potolok neravenstva Lyuboe neravenstvo mezhdu veshestvennym i celym chislami ravnosilno neravenstvu s polom i potolkom mezhdu celymi chislami n x n x x n x nn lt x n lt x x lt n x lt n displaystyle begin matrix n leqslant x amp Longleftrightarrow amp n leqslant lfloor x rfloor amp qquad x leqslant n amp Longleftrightarrow amp lceil x rceil leqslant n n lt x amp Longleftrightarrow amp n lt lceil x rceil amp qquad x lt n amp Longleftrightarrow amp lfloor x rfloor lt n end matrix Dva verhnih neravenstva yavlyayutsya neposredstvennymi sledstviyami opredelenij pola i potolka a dva nizhnie obrashenie verhnih ot protivnogo Funkcii pol potolok yavlyayutsya monotonno vozrastayushimi funkciyami x y x y x y x y displaystyle x leqslant y Rightarrow lfloor x rfloor leqslant lfloor y rfloor quad x leqslant y Rightarrow lceil x rceil leqslant lceil y rceil Pol potolok slozhenie Celochislennoe slagaemoe mozhno vnosit vynosit za skobki pola potolka x n x n x n x n displaystyle lfloor x n rfloor lfloor x rfloor n quad lceil x n rceil lceil x rceil n Predydushie ravenstva voobshe govorya ne vypolnyayutsya esli oba slagaemyh veshestvennye chisla Odnako i v etom sluchae spravedlivy neravenstva x y x y x y 1 x y 1 x y x y displaystyle lfloor x rfloor lfloor y rfloor leqslant lfloor x y rfloor leqslant lfloor x rfloor lfloor y rfloor 1 quad lceil x rceil lceil y rceil 1 leqslant lceil x y rceil leqslant lceil x rceil lceil y rceil Pol potolok pod znakom funkcii Imeet mesto sleduyushee predlozhenie Pust f x displaystyle f x nepreryvnaya monotonno vozrastayushaya funkciya opredelennaya na nekotorom promezhutke obladayushaya svojstvom f x Z x Z displaystyle f x in mathbb Z Rightarrow x in mathbb Z Togda f x f x f x f x displaystyle lfloor f x rfloor lfloor f lfloor x rfloor rfloor quad lceil f x rceil lceil f lceil x rceil rceil vsyakij raz kogda opredeleny f x f x f x displaystyle f x f lfloor x rfloor f lceil x rceil V chastnosti x mn x mn x mn x mn displaystyle left lfloor frac x m n right rfloor left lfloor frac left lfloor x right rfloor m n right rfloor quad left lceil frac x m n right rceil left lceil frac left lceil x right rceil m n right rceil esli m displaystyle m i n displaystyle n celye chisla i n gt 0 displaystyle n gt 0 Pol potolok summy Esli m n displaystyle m n celye chisla m gt 0 displaystyle m gt 0 to n nm n 1m n m 1m displaystyle n left lfloor frac n m right rfloor left lfloor frac n 1 m right rfloor dots left lfloor frac n m 1 m right rfloor Voobshe esli x displaystyle x proizvolnoe veshestvennoe chislo a m displaystyle m celoe polozhitelnoe to mx x x 1m x m 1m displaystyle lfloor mx rfloor left lfloor x right rfloor left lfloor x frac 1 m right rfloor dots left lfloor x frac m 1 m right rfloor Imeet mesto bolee obshee sootnoshenie 0 k lt m nk xm d xd m 1 n 1 2 d 12 d m n displaystyle sum 0 leqslant k lt m left lfloor frac nk x m right rfloor d left lfloor frac x d right rfloor frac m 1 n 1 2 frac d 1 2 quad d m n Tak kak pravaya chast etogo ravenstva simmetrichna otnositelno m displaystyle m i n displaystyle n to spravedliv sleduyushij zakon vzaimnosti 0 k lt m nk xm 0 k lt n mk xn m n gt 0 displaystyle sum 0 leqslant k lt m left lfloor frac nk x m right rfloor sum 0 leqslant k lt n left lfloor frac mk x n right rfloor quad m n gt 0 Razlozhimost v ryad Trivialnym obrazom funkciya ante raskladyvaetsya v ryad s pomoshyu funkcii Hevisajda x n n 8 x n 8 x n 1 displaystyle x sum n infty infty n left theta x n theta x n 1 right gde kazhdoe slagaemoe ryada sozdayot harakternye stupenki funkcii Etot ryad shoditsya absolyutno odnako oshibochnoe preobrazovanie ego slagaemyh mozhet privesti k uproshyonnomu ryadu n 8 x n displaystyle sum n infty infty theta left x n right kotoryj rashoditsya PrimenenieCelochislennye funkcii pol potolok nahodyat shirokoe primenenie v diskretnoj matematike i teorii chisel Nizhe privedeny nekotorye primery ispolzovaniya etih funkcij Kolichestvo cifr v zapisi chisla Kolichestvo cifr v zapisi celogo polozhitelnogo chisla v pozicionnoj sisteme schisleniya s osnovaniem b ravno logb n 1 displaystyle lfloor log b n rfloor 1 Okruglenie Osnovnaya statya Okruglenie Blizhajshee k x displaystyle x celoe chislo mozhet byt opredeleno po formule x x 0 5 displaystyle x lfloor x 0 5 rfloor Binarnaya operaciya mod Osnovnaya statya Ostatok ot deleniya Operaciya ostatok po modulyu oboznachaemaya xmody displaystyle x bmod y mozhet byt opredelena s pomoshyu funkcii pola sleduyushim obrazom Esli x y displaystyle x y proizvolnye veshestvennye chisla i y 0 displaystyle y neq 0 to nepolnoe chastnoe ot deleniya x displaystyle x na y displaystyle y ravno x y displaystyle lfloor x y rfloor a ostatok xmody x y x y displaystyle x bmod y x y lfloor x y rfloor Drobnaya chast Osnovnaya statya Drobnaya chast Drobnaya chast veshestvennogo chisla x displaystyle x po opredeleniyu ravna x xmod1 x x displaystyle x x bmod 1 x lfloor x rfloor Kolichestvo celyh tochek promezhutka Trebuetsya najti kolichestvo celyh tochek v zamknutom promezhutke s koncami a displaystyle alpha i b displaystyle beta to est kolichestvo celyh chisel n displaystyle n udovletvoryayushij neravenstvu a n b displaystyle alpha leqslant n leqslant beta V silu svojstv pol potolka eto neravenstvo ravnosilno a n b displaystyle lceil alpha rceil leqslant n leqslant lfloor beta rfloor Eto est chislo tochek v zamknutom promezhutke s koncami a displaystyle lceil alpha rceil i b displaystyle lfloor beta rfloor ravnoe b a 1 displaystyle lfloor beta rfloor lceil alpha rceil 1 Analogichno mozhno podschitat kolichestvo celyh tochek v drugih tipah promezhutkov Svodka rezultatov privedena nizhe n Z a n b b a 1 displaystyle n in mathbb Z colon alpha leqslant n leqslant beta lfloor beta rfloor lceil alpha rceil 1 n Z a n lt b b a displaystyle n in mathbb Z colon alpha leqslant n lt beta lceil beta rceil lceil alpha rceil n Z a lt n b b a displaystyle n in mathbb Z colon alpha lt n leqslant beta lfloor beta rfloor lfloor alpha rfloor n Z a lt n lt b b a 1 displaystyle n in mathbb Z colon alpha lt n lt beta lceil beta rceil lfloor alpha rfloor 1 Cherez M displaystyle M oboznachena moshnost mnozhestva M displaystyle M Pervye tri rezultata spravedlivy pri vseh a b displaystyle alpha leqslant beta a chetvyortyj tolko pri a lt b displaystyle alpha lt beta Teorema Releya o spektre Pust a displaystyle alpha i b displaystyle beta polozhitelnye irracionalnye chisla svyazannye sootnosheniem 1a 1b 1 displaystyle frac 1 alpha frac 1 beta 1 Togda v ryadu chisel a b 2a 2b ma mb displaystyle lfloor alpha rfloor lfloor beta rfloor lfloor 2 alpha rfloor lfloor 2 beta rfloor ldots lfloor m alpha rfloor lfloor m beta rfloor ldots kazhdoe naturalnoe n N displaystyle n in mathbb N vstrechaetsya v tochnosti odin raz Inymi slovami posledovatelnosti ma m N displaystyle m alpha mid m in mathbb N i mb m N displaystyle m beta mid m in mathbb N nazyvaemye posledovatelnostyami Bitti obrazuyut razbienie naturalnogo ryada V informatikeV yazykah programmirovaniya Vo mnogih yazykah programmirovaniya sushestvuyut vstroennye funkcii pola potolka floor ceil V sistemah vyorstki V TeX i LaTeX dlya simvolov pola potolka displaystyle lfloor displaystyle rfloor displaystyle lceil displaystyle rceil sushestvuyut specialnye komandy lfloor rfloor lceil rceil Poskolku wiki ispolzuet LaTeX dlya nabora matematicheskih formul to i v dannoj state ispolzovany imenno eti komandy PrimechaniyaLemmermeyer pp 10 23 Oboznachenie Gaussa ispolzovali Cassels Hardy amp Wright i Ribenboim Graham Knuth amp Patashnik i Crandall amp Pomerance ispolzovali oboznachenie Ajversona Iverson p 12 Higham p 25 R Grehem D Knut O Patashnik Konkretnaya matematika S 88 Weisstein Eric W Floor Function angl na sajte Wolfram MathWorld R Grehem D Knut O Patashnik Konkretnaya matematika S 90 R Grehem D Knut O Patashnik Konkretnaya matematika S 89 R Grehem D Knut O Patashnik Konkretnaya matematika S 90 91 R Grehem D Knut O Patashnik Konkretnaya matematika S 93 R Grehem D Knut O Patashnik Konkretnaya matematika S 108 R Grehem D Knut O Patashnik Konkretnaya matematika S 112 117 R Grehem D Knut O Patashnik Konkretnaya matematika S 91 R Grehem D Knut O Patashnik Konkretnaya matematika S 95 96 R Grehem D Knut O Patashnik Konkretnaya matematika S 99 100 A Baababov Pentium horosho a um luchshe Kvant 1999 4 S 36 38 22 iyulya 2014 goda Sm takzheDrobnaya chast Okruglenie Desyatichnyj razdelitelLiteraturaR Grehem D Knut O Patashnik Konkretnaya matematika M Mir 1998 703 s ISBN 5 03 001793 3 M K Potapov V V Aleksandrov P I Pasichenko Algebra i nachala analiza AO Stoletie 1996
Вершина