Поддерживать
www.wikidata.ru-ru.nina.az
Zapros Metabolizm perenapravlyaetsya syuda ob arhitekturnoj koncepcii sm Metabolizm arhitektura Metaboli zm ili obme n veshe stv eto himicheskie reakcii podderzhivayushie zhizn v zhivom organizme Eti processy pozvolyayut organizmam rasti i razmnozhatsya sohranyat svoi struktury i otvechat na vozdejstviya okruzhayushej sredy Uproshennaya shema kletochnogo metabolizma Metabolizm obychno delyat na 2 stadii katabolizm i anabolizm V hode katabolizma slozhnye organicheskie veshestva degradiruyut do bolee prostyh obychno vydelyaya energiyu a v processah anabolizma bolee slozhnye veshestva sinteziruyutsya iz bolee prostyh s zatratami energii Serii himicheskih reakcij obmena veshestv nazyvayut metabolicheskimi putyami V nih pri uchastii fermentov odni biologicheski znachimye molekuly posledovatelno prevrashayutsya v drugie Fermenty igrayut vazhnuyu rol v metabolicheskih processah potomu chto Struktura adenozintrifosfata glavnogo posrednika v energeticheskom obmene veshestvdejstvuyut kak biologicheskie katalizatory i snizhayut energiyu aktivacii himicheskoj reakcii pozvolyayut regulirovat metabolicheskie puti v otvet na izmeneniya sredy kletki ili signaly ot drugih kletok Osobennosti metabolizma vliyayut na to budet li prigodna opredelyonnaya molekula dlya ispolzovaniya organizmom v kachestve istochnika energii Tak naprimer nekotorye prokarioty ispolzuyut serovodorod v kachestve istochnika energii odnako etot gaz yadovit dlya zhivotnyh Skorost obmena veshestv takzhe vliyaet na kolichestvo pishi neobhodimoj dlya organizma Evolyucionnye aspekty metabolizmaOsnovnye metabolicheskie puti i ih komponenty odinakovy dlya mnogih vidov chto svidetelstvuet o edinstve proishozhdeniya vseh zhivyh sushestv Naprimer nekotorye karbonovye kisloty yavlyayushiesya intermediatami cikla trikarbonovyh kislot prisutstvuyut vo vseh organizmah nachinaya ot bakterij i zakanchivaya mnogokletochnymi organizmami eukariot Shodstva v obmene veshestv veroyatno svyazany s vysokoj effektivnostyu metabolicheskih putej a takzhe s ih rannim poyavleniem v istorii evolyucii Biologicheskie molekulyStruktura lipida trigliceridaDiagramma izobrazhayushaya bolshoj nabor metabolicheskih putej cheloveka Organicheskie veshestva vhodyashie v sostav vseh zhivyh sushestv zhivotnyh rastenij gribov i mikroorganizmov predstavleny v osnovnom aminokislotami uglevodami lipidami chasto nazyvaemye zhirami i nukleinovymi kislotami Tak kak eti molekuly imeyut vazhnoe znachenie dlya zhizni metabolicheskie reakcii sosredotocheny na sozdanii etih molekul pri stroitelstve kletok i tkanej ili razrushenii ih s celyu ispolzovaniya v kachestve istochnika energii Mnogie vazhnye biohimicheskie reakcii obedinyayutsya vmeste dlya sinteza DNK i belkov Tip molekuly Nazvanie formy monomera Nazvanie formy polimera Primery form polimeraAminokisloty Aminokisloty Belki polipeptidy Fibrillyarnye belki i globulyarnye belkiUglevody Monosaharidy Polisaharidy Krahmal glikogen cellyulozaNukleinovye kisloty Nukleotidy Polinukleotidy DNK i RNKAminokisloty i belki Osnovnaya statya Belki Belki yavlyayutsya biopolimerami i sostoyat iz ostatkov aminokislot soedinyonnyh peptidnymi svyazyami Nekotorye belki yavlyayutsya fermentami i kataliziruyut himicheskie reakcii Drugie belki vypolnyayut strukturnuyu ili mehanicheskuyu funkciyu naprimer obrazuyut citoskelet Belki takzhe igrayut vazhnuyu rol v peredache signala v kletkah immunnyh reakciyah agregacii kletok aktivnom transporte cherez membrany i regulyacii kletochnogo cikla Aminokisloty takzhe sposobstvuyut kletochnomu energeticheskomu metabolizmu obespechivaya istochnik ugleroda dlya vhoda v cikl limonnoj kisloty cikl trikarbonovyh kislot osobenno kogda osnovnogo istochnika energii takogo kak glyukoza nedostatochno ili kogda kletki podvergayutsya metabolicheskomu stressu Lipidy Osnovnye stati Lipidy i Lipidnyj obmen Lipidy eto samaya raznoobraznaya gruppa biohimicheskih veshestv Oni vhodyat v sostav biologicheskih membran naprimer plazmaticheskih membran yavlyayutsya komponentami kofermentov i istochnikami energii Lipidy predstavlyayut soboj polimery zhirnyh kislot kotorye soderzhat dlinnuyu nepolyarnuyu uglevodorodnuyu cep s nebolshoj polyarnoj oblastyu soderzhashej kislorod Lipidy yavlyayutsya gidrofobnymi ili amfifilnymi biologicheskimi molekulami rastvorimymi v organicheskih rastvoritelyah takih kak benzol ili hloroform Zhiry bolshaya gruppa soedinenij v sostav kotoryh vhodyat zhirnye kisloty i glicerin Molekula tryohatomnogo spirta glicerina obrazuyushaya tri slozhnye efirnye svyazi s tremya molekulami zhirnyh kislot nazyvaetsya trigliceridom Naryadu s ostatkami zhirnyh kislot v sostav slozhnyh lipidov mozhet vhodit naprimer sfingozin sfingolipidy gidrofilnye gruppy fosfatov v fosfolipidah Steroidy naprimer holesterol predstavlyayut soboj eshyo odin bolshoj klass lipidov Uglevody Osnovnye stati Uglevody i Uglevodnyj obmen Glyukoza mozhet sushestvovat kak v forme pryamoj cepi tak i v forme kolca Sahara mogut sushestvovat v kolcevoj ili linejnoj forme v vide aldegidov ili ketonov imeyut neskolko gidroksilnyh grupp Uglevody yavlyayutsya naibolee rasprostranyonnymi biologicheskimi molekulami Uglevody vypolnyayut sleduyushie funkcii hranenie i transportirovka energii krahmal glikogen strukturnaya cellyuloza rastenij hitin u gribov i zhivotnyh Naibolee rasprostranyonnymi monomerami saharov yavlyayutsya geksozy glyukoza fruktoza i galaktoza Monosaharidy vhodyat v sostav bolee slozhnyh linejnyh ili razvetvlyonnyh polisaharidov Nukleotidy Osnovnaya statya Nukleotidy Polimernye molekuly DNK i RNK predstavlyayut soboj dlinnye nerazvetvlyonnye cepochki nukleotidov Nukleinovye kisloty vypolnyayut funkciyu hraneniya i realizacii geneticheskoj informacii kotorye osushestvlyayutsya v hode processov replikacii transkripcii translyacii i biosinteza belka Informaciya zakodirovannaya v nukleinovyh kislotah zashishaetsya ot izmenenij sistemami reparacii i multipliciruetsya pri pomoshi replikacii DNK Nekotorye virusy imeyut RNK soderzhashij genom Naprimer virus immunodeficita cheloveka ispolzuet obratnuyu transkripciyu dlya sozdaniya matricy DNK iz sobstvennogo RNK soderzhashego genoma Nekotorye molekuly RNK obladayut kataliticheskimi svojstvami ribozimy i vhodyat v sostav splajsosom i ribosom Nukleozidy produkty prisoedineniya azotistyh osnovanij k saharu riboze Primerami azotistyh osnovanij yavlyayutsya geterociklicheskie azotsoderzhashie soedineniya proizvodnye purinov i pirimidinov Nekotorye nukleotidy takzhe vystupayut v kachestve kofermentov v reakciyah perenosa funkcionalnyh grupp Kofermenty Struktura kofermenta Acetil KoA Acetilnaya gruppa svyazana s atomom sery po levomu krayuPodrobnoe rassmotrenie temy Kofermenty Metabolizm vklyuchaet shirokij spektr himicheskih reakcij bolshinstvo iz kotoryh otnositsya k neskolkim osnovnym tipam reakcij perenosa funkcionalnyh grupp Dlya perenosa funkcionalnyh grupp mezhdu fermentami kataliziruyushimi himicheskie reakcii ispolzuyutsya kofermenty Kazhdyj klass himicheskih reakcij perenosa funkcionalnyh grupp kataliziruetsya otdelnymi fermentami i ih kofaktorami Adenozintrifosfat ATF odin iz centralnyh kofermentov universalnyj istochnik energii kletok Etot nukleotid ispolzuetsya dlya peredachi himicheskoj energii zapasyonnoj v makroergicheskih svyazyah mezhdu razlichnymi himicheskimi reakciyami V kletkah sushestvuet nebolshoe kolichestvo ATF kotoryj postoyanno regeneriruetsya iz ADF i AMF Organizm cheloveka za sutki rashoduet massu ATF ravnuyu masse sobstvennogo tela ATF vystupaet v kachestve svyazuyushego zvena mezhdu katabolizmom i anabolizmom pri katabolicheskih reakciyah obrazuetsya ATF pri anabolicheskih energiya potreblyaetsya ATF takzhe vystupaet donorom fosfatnoj gruppy v reakciyah fosforilirovaniya Vitaminy nizkomolekulyarnye organicheskie veshestva neobhodimye v nebolshih kolichestvah prichyom naprimer u cheloveka bolshinstvo vitaminov ne sinteziruetsya a poluchaetsya s pishej ili cherez mikrofloru ZhKT V organizme cheloveka bolshinstvo vitaminov yavlyayutsya kofaktorami fermentov Bolshinstvo vitaminov priobretaet biologicheskuyu aktivnost v izmenyonnom vide naprimer vse vodorastvorimye vitaminy v kletkah fosforiliruyutsya ili soedinyayutsya s nukleotidami Nikotinamidadenindinukleotid NADH yavlyaetsya proizvodnym vitamina B3 niacina i predstavlyaet soboj vazhnyj koferment akceptora vodoroda Sotni razlichnyh fermentov degidrogenaz otnimayut elektrony iz molekul substratov i perenosyat ih na molekuly NAD vosstanavlivaya ego do NADH Okislennaya forma kofermenta yavlyaetsya substratom dlya razlichnyh reduktaz v kletke NAD v kletke sushestvuet v dvuh svyazannyh formah NADH i NADPH NAD NADH bolshe vazhen dlya protekaniya katabolicheskih reakcij a NADP NADPH chashe ispolzuetsya v anabolicheskih reakciyah Struktura gemoglobina Belkovye subedinicy okrasheny krasnym i sinim a zhelezosoderzhashij gem zelyonym Iz PDB 1GZXNeorganicheskie veshestva i kofaktory Osnovnaya statya Bioneorganicheskaya himiya Neorganicheskie elementy igrayut vazhnejshuyu rol v obmene veshestv Okolo 99 massy mlekopitayushego sostoit iz ugleroda azota kalciya natriya magniya hlora kaliya vodoroda fosfora kisloroda i sery Biologicheski znachimye organicheskie soedineniya belki zhiry uglevody i nukleinovye kisloty soderzhat bolshoe kolichestvo ugleroda vodoroda kisloroda azota i fosfora Mnogie neorganicheskie soedineniya yavlyayutsya ionnymi elektrolitami Naibolee vazhny dlya organizma iony natriya kaliya kalciya magniya hloridov fosfatov i gidrokarbonatov Balans etih ionov vnutri kletki i vo vnekletochnoj srede opredelyaet osmoticheskoe davlenie i pH Koncentracii ionov takzhe igrayut vazhnuyu rol dlya funkcionirovaniya nervnyh i myshechnyh kletok Potencial dejstviya v vozbudimyh tkanyah voznikaet pri obmene ionami mezhdu vnekletochnoj zhidkostyu i citoplazmoj Elektrolity vhodyat i vyhodyat iz kletki cherez ionnye kanaly v plazmaticheskoj membrane Naprimer v hode myshechnogo sokrasheniya v plazmaticheskoj membrane citoplazme i T trubochkah peremeshayutsya iony kalciya natriya i kaliya Perehodnye metally v organizme yavlyayutsya mikroelementami naibolee rasprostraneny cink i zhelezo Eti metally ispolzuyutsya nekotorymi belkami naprimer fermentami v kachestve kofaktorov i imeyut vazhnoe znachenie dlya regulyacii aktivnosti fermentov i transportnyh belkov Kofaktory fermentov obychno prochno svyazany so specificheskim belkom odnako mogut modificirovatsya v processe kataliza pri etom posle okonchaniya kataliza vsegda vozvrashayutsya k svoemu pervonachalnomu sostoyaniyu ne rashoduyutsya Metally mikroelementy usvaivayutsya organizmom pri pomoshi specialnyh transportnyh belkov i ne vstrechayutsya v organizme v svobodnom sostoyanii tak kak svyazany so specificheskimi belkami perenoschikami naprimer ferritinom ili metallotioneinami Klassifikaciya organizmov po tipu metabolizmaVse zhivye organizmy mozhno razdelit na vosem osnovnyh grupp v zavisimosti ot ispolzuemogo istochnika energii istochnika ugleroda i donora elektronov okislyaemogo substrata V kachestve istochnika energii zhivye organizmy mogut ispolzovat energiyu sveta foto ili energiyu himicheskih svyazej hemo Dopolnitelno dlya opisaniya paraziticheskih organizmov ispolzuyushih energeticheskie resursy hozyajskoj kletki primenyayut termin paratrof Pomimo istochnika energii zhivym organizmam takzhe trebuetsya donor elektronov okislyaemoe veshestvo ot kotorogo otryvaetsya elektron kotoryj ispolzuetsya dlya sinteza organiki V kachestve donora elektronov vosstanovitelya zhivye organizmy mogut ispolzovat neorganicheskie veshestva lito ili organicheskie veshestva organo V kachestve istochnika ugleroda zhivye organizmy ispolzuyut uglekislyj gaz avto ili organicheskie veshestva getero Inogda terminy avto i geterotrof ispolzuyut v otnoshenii drugih elementov kotorye vhodyat v sostav biologicheskih molekul v vosstanovlennoj forme naprimer azota sery V takom sluchae avtotrofnymi po azotu organizmami yavlyayutsya vidy ispolzuyushie v kachestve istochnika azota okislennye neorganicheskie soedineniya naprimer rasteniya mogut osushestvlyat vosstanovlenie nitratov A geterotrofnymi po azotu yavlyayutsya organizmy ne sposobnye osushestvlyat vosstanovlenie okislennyh form azota i ispolzuyushie v kachestve ego istochnika organicheskie soedineniya naprimer zhivotnye dlya kotoryh istochnikom azota sluzhat aminokisloty Nazvanie tipa metabolizma formiruetsya putyom slozheniya sootvetstvuyushih kornej i dobavleniem v konce kornya trof V tablice predstavleny vozmozhnye tipy metabolizma s primerami Istochnik energii Donor elektronov Istochnik ugleroda Tip metabolizma PrimerySolnechnyj svet Foto Organicheskie veshestva organo Organicheskie veshestva geterotrof Foto organo geterotrofy Purpurnye nesernye bakterii Galobakterii Nekotorye cianobakterii Neorganicheskij uglerod avtotrof Foto organo avtotrofy Redkij tip metabolizma svyazannyj s okisleniem neusvaivaemyh veshestv Harakteren dlya nekotoryh purpurnyh bakterij Neorganicheskie veshestva lito Organicheskie veshestva geterotrof Foto lito geterotrofy Nekotorye cianobakterii purpurnye i zelyonye bakterii takzhe geliobakterii Neorganicheskij uglerod avtotrof Foto lito avtotrofy Vysshie rasteniya Vodorosli Cianobakterii Purpurnye sernye bakterii Zelyonye bakterii Energiya himicheskih svyazej Hemo Organicheskie veshestva organo Organicheskie veshestva geterotrof Hemo organo geterotrofy Zhivotnye Griby Bolshinstvo mikroorganizmov reducentov Neorganicheskij uglerod avtotrof Hemo organo avtotrofy Bakterii specializiruyushiesya na okislenii trudnousvaivaemyh veshestv naprimer fakultativnye metilotrofy okislyayushie muravinuyu kislotu Neorganicheskie veshestva lito Organicheskie veshestva geterotrof Hemo lito geterotrofy Metanobrazuyushie arhei Vodorodnye bakterii Neorganicheskij uglerod avtotrof Hemo lito avtotrofy Zhelezobakterii Vodorodnye bakterii Nitrificiruyushie bakterii Serobakterii Nekotorye avtory ispolzuyut gidro kogda v kachestve donora elektronov vystupaet vodaCO2 CO HCHO CH3OH CH4 HCOO i neorganicheskaya metilnaya gruppa SH3 prisoedinyonnaya cherez atom kisloroda azota ili sery k drugim metilnym gruppam ot odnoj do tryoh ili k mnogouglerodnomu skeletu Klassifikaciya byla razrabotana gruppoj avtorov A Lvov K van Nil F J Ryan E Tejtem i utverzhdena na 11 m simpoziume v laboratorii Kold Spring Harbor i iznachalno sluzhila dlya opisaniya tipov pitaniya mikroorganizmov Odnako v nastoyashee vremya primenyaetsya i dlya opisaniya metabolizma drugih organizmov Iz tablicy ochevidno chto metabolicheskie vozmozhnosti prokariot znachitelno raznoobraznee po sravneniyu s eukariotami kotorye harakterizuyutsya fotolitoavtotrofnym i hemoorganogeterotrofnym tipom metabolizma Sleduet otmetit chto nekotorye vidy mikroorganizmov mogut v zavisimosti ot uslovij sredy osveshenie dostupnost organicheskih veshestv i t d i fiziologicheskogo sostoyaniya osushestvlyat metabolizm raznogo tipa Takoe sochetanie neskolkih tipov metabolizma opisyvaetsya kak miksotrofiya Pri primenenii dannoj klassifikacii k mnogokletochnym organizmam vazhno ponimat chto v ramkah odnogo organizma mogut byt kletki otlichayushiesya tipom obmena veshestv Tak kletki nadzemnyh fotosinteziruyushih organov mnogokletochnyh rastenij harakterizuyutsya fotolitoavtotrofnym tipom metabolizma v to vremya kak kletki podzemnyh organov opisyvayutsya kak hemoorganogeterotrofnye Tak zhe kak i v sluchae s mikroorganizmami pri izmenenii uslovij sredy stadii razvitiya i fiziologicheskogo sostoyaniya tip metabolizma kletok mnogokletochnogo organizma mozhet izmenyatsya Tak naprimer v temnote i na stadii prorastaniya semeni kletki vysshih rastenij osushestvlyayut metabolizm hemoorganogeterotrofnogo tipa KatabolizmOsnovnaya statya Katabolizm Katabolizmom nazyvayut metabolicheskie processy pri kotoryh rassheplyayutsya otnositelno krupnye organicheskie molekuly saharov zhirov aminokislot V hode katabolizma obrazuyutsya bolee prostye organicheskie molekuly neobhodimye dlya reakcij anabolizma biosinteza Chasto imenno v hode reakcij katabolizma organizm mobilizuet energiyu perevodya energiyu himicheskih svyazej organicheskih molekul poluchennyh v processe perevarivaniya pishi v dostupnye formy v vide ATF vosstanovlennyh kofermentov i transmembrannogo elektrohimicheskogo potenciala Termin katabolizm ne yavlyaetsya sinonimom energeticheskogo obmena u mnogih organizmov naprimer u fototrofov osnovnye processy zapasaniya energii ne svyazany napryamuyu s rasshepleniem organicheskih molekul Klassifikaciya organizmov po tipu metabolizma mozhet byt osnovana na istochnike polucheniya energii chto otrazheno v predydushem razdele Energiyu himicheskih svyazej ispolzuyut hemotrofy a fototrofy potreblyayut energiyu solnechnogo sveta Odnako vse eti razlichnye formy obmena veshestv zavisyat ot okislitelno vosstanovitelnyh reakcij kotorye svyazany s peredachej elektronov ot vosstanovlennyh donorov molekul takih kak organicheskie molekuly voda ammiak serovodorod na akceptornye molekuly takie kak kislorod nitraty ili sulfat U zhivotnyh eti reakcii sopryazheny s rasshepleniem slozhnyh organicheskih molekul do bolee prostyh takih kak dvuokis ugleroda i vodu V fotosinteziruyushih organizmah rasteniyah i cianobakteriyah reakcii perenosa elektrona ne vysvobozhdayut energiyu no oni ispolzuyutsya kak sposob zapasaniya energii pogloshaemoj iz solnechnogo sveta Katabolizm u zhivotnyh mozhet byt razdelyon na tri osnovnyh etapa Vo pervyh krupnye organicheskie molekuly takie kak belki polisaharidy i lipidy rassheplyayutsya do bolee melkih komponentov vne kletok Dalee eti nebolshie molekuly popadayut v kletki i prevrashaetsya v eshyo bolee melkie molekuly naprimer acetil KoA V svoyu ochered acetilnaya gruppa kofermenta A okislyaetsya do vody i uglekislogo gaza v cikle Krebsa i dyhatelnoj cepi vysvobozhdaya pri etom energiyu kotoraya zapasaetsya v forme ATR Pishevarenie Podrobnoe rassmotrenie temy Pishevarenie i Zheludochno kishechnyj trakt Takie makromolekuly kak krahmal cellyuloza ili belki dolzhny rassheplyatsya do bolee melkih edinic prezhde chem oni mogut byt ispolzovany kletkami Neskolko klassov fermentov prinimayut uchastie v degradacii proteazy kotorye rassheplyayut belki do peptidov i aminokislot glikozidazy kotorye rassheplyayut polisaharidy do oligo i monosaharidov Mikroorganizmy vydelyayut gidroliticheskie fermenty v prostranstvo vokrug sebya chem otlichayutsya ot zhivotnyh kotorye vydelyayut takie fermenty tolko iz specializirovannyh zhelezistyh kletok Aminokisloty i monosaharidy obrazuyushiesya v rezultate aktivnosti vnekletochnyh fermentov zatem postupayut v kletki s pomoshyu aktivnogo transporta Uproshyonnaya shema katabolizma belkov saharov i lipidovPoluchenie energii Podrobnoe rassmotrenie temy Kletochnoe dyhanie Brozhenie Lipoliz i Beta okislenie V hode katabolizma uglevodov slozhnye sahara rassheplyayutsya do monosaharidov kotorye usvaivayutsya kletkami Popav vnutr sahara naprimer glyukoza i fruktoza v processe glikoliza prevrashayutsya v piruvat pri etom vyrabatyvaetsya nekotoroe kolichestvo ATF Pirovinogradnaya kislota piruvat yavlyaetsya promezhutochnym produktom v neskolkih metabolicheskih putyah Osnovnoj put metabolizma piruvata prevrashenie v acetil KoA i dalee postuplenie v cikl trikarbonovyh kislot Pri etom v cikle Krebsa v forme ATR zapasaetsya chast energii a takzhe vosstanavlivayutsya molekuly NADH i FAD V processe glikoliza i cikla trikarbonovyh kislot obrazuetsya dioksid ugleroda kotoryj yavlyaetsya pobochnym produktom zhiznedeyatelnosti V anaerobnyh usloviyah v rezultate glikoliza iz piruvata pri uchastii fermenta laktatdegidrogenazy obrazuetsya laktat i proishodit okislenie NADH do NAD kotoryj povtorno ispolzuetsya v reakciyah glikoliza Sushestvuet takzhe alternativnyj put metabolizma monosaharidov pentozofosfatnyj put v hode reakcij kotorogo energiya zapasaetsya v forme vosstanovlennogo kofermenta NADPH i obrazuyutsya pentozy naprimer riboza neobhodimaya dlya sinteza nukleinovyh kislot Zhiry na pervom etape katabolizma gidrolizuyutsya v svobodnye zhirnye kisloty i glicerin Zhirnye kisloty rassheplyayutsya v processe beta okisleniya s obrazovaniem acetil KoA kotoryj v svoyu ochered dalee kataboliziruetsya v cikle Krebsa libo idyot na sintez novyh zhirnyh kislot Zhirnye kisloty vydelyayut bolshe energii chem uglevody tak kak zhiry soderzhat udelno bolshe atomov vodoroda v svoej strukture Aminokisloty libo ispolzuyutsya dlya sinteza belkov i drugih biomolekul libo okislyayutsya do mocheviny dioksida ugleroda i sluzhat istochnikom energii Okislitelnyj put katabolizma aminokislot nachinaetsya s udaleniya aminogruppy fermentami transaminazami Aminogruppy utiliziruyutsya v cikle mocheviny aminokisloty lishyonnye aminogrupp nazyvayut ketokislotami Nekotorye ketokisloty promezhutochnye produkty cikla Krebsa Naprimer pri dezaminirovanii glutamata obrazuetsya alfa ketoglutarovaya kislota Glikogennye aminokisloty takzhe mogut byt preobrazovany v glyukozu v reakciyah glyukoneogeneza Energeticheskie prevrasheniyaOkislitelnoe fosforilirovanie Podrobnoe rassmotrenie temy Okislitelnoe fosforilirovanie Hemiosmos i Mitohondriya Pri okislitelnom fosforilirovanii elektrony udalyonnye iz pishevyh molekul v metabolicheskih putyah naprimer v cikle Krebsa perenosyatsya na kislorod a vydelyayushayasya energiya ispolzuetsya dlya sinteza ATF U eukariot dannyj process osushestvlyaetsya pri uchastii ryada belkov zakreplyonnyh v membranah mitohondrij nazyvaemyh dyhatelnoj cepyu perenosa elektronov U prokariot eti belki prisutstvuyut vo vnutrennej membrane kletochnoj stenki Belki cepi perenosa elektronov ispolzuyut energiyu poluchennuyu pri peredache elektronov ot vosstanovlennyh molekul naprimer NADH na kislorod dlya perekachki protonov cherez membranu Mehanizm dejstviya ATF sintazy ATF pokazan krasnym cvetom ADF i fosfat rozovym a vrashayushayasya steblevaya subedinica chyornym Pri perekachke protonov sozdayotsya raznica koncentracij ionov vodoroda i voznikaet elektrohimicheskij gradient Eta sila vozvrashaet protony obratno v mitohondrii cherez osnovanie ATF sintazy Potok protonov zastavlyaet vrashatsya kolco iz c subedinic fermenta v rezultate chego aktivnyj centr sintazy izmenyaet formu i fosforiliruet adenozindifosfat prevrashaya ego v ATF Energiya iz neorganicheskih soedinenij Hemolitotrofami nazyvayut prokariot imeyushih osobyj tip obmena veshestv pri kotorom energiya obrazuetsya v rezultate okisleniya neorganicheskih soedinenij Hemolitotrofy mogut okislyat molekulyarnyj vodorod soedineniya sery naprimer sulfidy serovodorod i neorganicheskie tiosulfaty oksid zheleza II ili ammiak Pri etom energiya ot okisleniya etih soedinenij obrazuetsya s pomoshyu akceptorov elektronov takih kak kislorod ili nitrity Processy polucheniya energii iz neorganicheskih veshestv igrayut vazhnuyu rol v takih biogeohimicheskih ciklah kak acetogenez nitrifikaciya i denitrifikaciya Energiya iz solnechnogo sveta Energiya solnechnogo sveta pogloshaetsya rasteniyami cianobakteriyami purpurnymi bakteriyami zelyonymi sernymi bakteriyami i nekotorymi prostejshimi Etot process chasto sochetaetsya s prevrasheniem dioksida ugleroda v organicheskie soedineniya kak chast processa fotosinteza sm nizhe Sistemy zahvata energii i fiksacii ugleroda u nekotoryh prokariot mogut rabotat razdelno naprimer u purpurnyh i zelyonyh sernyh bakterij U mnogih organizmov pogloshenie solnechnoj energii v principe analogichno okislitelnomu fosforilirovaniyu tak kak pri etom energiya zapasaetsya v forme gradienta koncentracii protonov i dvizhushaya sila protonov privodit k sintezu ATF Elektrony neobhodimye dlya etoj cepi perenosa postupayut ot svetosobirayushih belkov nazyvaemyh centrami fotosinteticheskih reakcij primerom yavlyayutsya rodopsiny V zavisimosti ot vida fotosinteticheskih pigmentov klassificiruyut dva tipa centrov reakcij v nastoyashee vremya bolshinstvo fotosinteziruyushih bakterij imeyut tolko odin tip v to vremya kak rasteniya i cianobakterii dva U rastenij vodoroslej i cianobakterij fotosistema II ispolzuet energiyu sveta dlya udaleniya elektronov iz vody pri etom molekulyarnyj kislorod vydelyaetsya kak pobochnyj produkt reakcii Elektrony zatem postupayut v kompleks citohroma b6f kotoryj ispolzuet energiyu dlya perekachki protonov cherez tilakoidnuyu membranu v hloroplastah Pod dejstviem elektrohimicheskogo gradienta protony dvizhutsya obratno cherez membranu i zapuskayut ATR sintazu Elektrony zatem prohodyat cherez fotosistemu I i mogut byt ispolzovany dlya vosstanovleniya kofermenta NADP dlya ispolzovaniya v cikle Kalvina ili recirkulyacii dlya obrazovaniya dopolnitelnyh molekul ATR AnabolizmPodrobnoe rassmotrenie temy Anabolizm Anabolizm sovokupnost metabolicheskih processov biosinteza slozhnyh molekul s zatratoj energii Slozhnye molekuly vhodyashie v sostav kletochnyh struktur sinteziruyutsya posledovatelno iz bolee prostyh predshestvennikov Anabolizm vklyuchaet tri osnovnyh etapa kazhdyj iz kotoryh kataliziruetsya specializirovannym fermentom Na pervom etape sinteziruyutsya molekuly predshestvenniki naprimer aminokisloty monosaharidy terpenoidy i nukleotidy Na vtorom etape predshestvenniki s zatratoj energii ATF preobrazuyutsya v aktivirovannye formy Na tretem etape aktivirovannye monomery obedinyayutsya v bolee slozhnye molekuly naprimer belki polisaharidy lipidy i nukleinovye kisloty Ne vse zhivye organizmy mogut sintezirovat vse biologicheski aktivnye molekuly Avtotrofy naprimer rasteniya mogut sintezirovat slozhnye organicheskie molekuly iz takih prostyh neorganicheskih nizkomolekulyarnyh veshestv kak uglekislyj gaz i voda Geterotrofam neobhodim istochnik bolee slozhnyh veshestv takih kak monosaharidy i aminokisloty dlya sozdaniya bolee slozhnyh molekul Organizmy klassificiruyut po ih osnovnym istochnikam energii fotoavtotrofy i fotogeterotrofy poluchayut energiyu iz solnechnogo sveta v to vremya kak hemoavtotrofy i hemogeterotrofy poluchayut energiyu iz neorganicheskih reakcij okisleniya Svyazyvanie ugleroda Podrobnoe rassmotrenie temy Fotosintez i Hemosintez Rastitelnye kletki soderzhat hloroplasty zelyonogo cveta v tilakoidah kotoryh proishodyat processy fotosinteza iz semejstva otdela Nastoyashie mhi Bryophyta Fotosintezom nazyvayut process biosinteza saharov iz uglekislogo gaza pri kotorom neobhodimaya energiya pogloshaetsya iz solnechnogo sveta U rastenij cianobakterij i vodoroslej pri kislorodnom fotosinteze proishodit fotoliz vody pri etom kak pobochnyj produkt vydelyaetsya kislorod Dlya preobrazovaniya CO2 v 3 fosfoglicerat ispolzuetsya energiya ATF i NADF zapasyonnaya v fotosistemah Reakciya svyazyvaniya ugleroda osushestvlyaetsya s pomoshyu fermenta ribulozobisfosfatkarboksilazy i yavlyaetsya chastyu cikla Kalvina U rastenij klassificiruyut tri tipa fotosinteza po puti tryohuglerodnyh molekul po puti chetyryohuglerodyh molekul S4 i CAM fotosintez Tri tipa fotosinteza otlichayutsya po puti svyazyvaniya uglekislogo gaza i ego vhozhdeniya v cikl Kalvina u C3 rastenij svyazyvanie CO2 proishodit neposredstvenno v cikle Kalvina a pri S4 i CAM CO2 predvaritelno vklyuchaetsya v sostav drugih soedinenij Raznye formy fotosinteza yavlyayutsya prisposobleniyami k intensivnomu potoku solnechnyh luchej i k suhim usloviyam U fotosinteziruyushih prokariot mehanizmy svyazyvaniya ugleroda bolee raznoobrazny Uglekislyj gaz mozhet byt fiksirovan v cikle Kalvina v obratnom cikle Krebsa ili v reakciyah karboksilirovaniya acetil KoA Prokarioty hemoavtotrofy takzhe svyazyvayut CO2 cherez cikl Kalvina no dlya protekaniya reakcii ispolzuyut energiyu iz neorganicheskih soedinenij Uglevody i glikany Podrobnoe rassmotrenie temy Glyukoneogenez i Glikozilirovanie V processe anabolizma saharov prostye organicheskie kisloty mogut byt preobrazovany v monosaharidy naprimer v glyukozu i zatem ispolzovany dlya sinteza polisaharidov takih kak krahmal Obrazovanie glyukozy iz soedinenij takih kak piruvat laktat glicerin 3 fosfoglicerat i aminokislot nazyvayut glyukoneogenezom V processe glyukoneogeneza piruvat prevrashaetsya v glyukozo 6 fosfat cherez ryad promezhutochnyh soedinenij mnogie iz kotoryh obrazuyutsya i pri glikolize Odnako glyukoneogenez ne prosto yavlyaetsya glikolizom v obratnom napravlenii tak kak neskolko himicheskih reakcij kataliziruyut specialnye fermenty chto dayot vozmozhnost nezavisimo regulirovat processy obrazovaniya i raspada glyukozy Mnogie organizmy zapasayut pitatelnye veshestva v forme lipidov i zhirov odnako pozvonochnye ne imeyut fermentov kataliziruyushih prevrashenie acetil KoA produkta metabolizma zhirnyh kislot v piruvat substrat glyukoneogeneza Posle dlitelnogo golodaniya pozvonochnye nachinayut sintezirovat ketonovye tela iz zhirnyh kislot kotorye mogut zamenyat glyukozu v takih tkanyah kak golovnoj mozg U rastenij i bakterij dannaya metabolicheskaya problema reshaetsya ispolzovaniem glioksilatnogo cikla kotoryj obhodit etap dekarboksilirovaniya v cikle limonnoj kisloty i pozvolyaet prevrashat acetil KoA v oksaloacetat i dalee ispolzovat dlya sinteza glyukozy Pomimo zhira glyukoza hranitsya v bolshinstve tkanej v kachestve energeticheskogo resursa dostupnogo v tkanyah posredstvom glikogeneza kotoryj obychno ispolzuetsya dlya podderzhaniya urovnya glyukozy v krovi Polisaharidy i glikany obrazuyutsya putem posledovatelnogo dobavleniya monosaharidov glikoziltransferazoj iz reaktivnogo donora sahara fosfata takogo kak uridindifosfat glyukozy UDP Glc k akceptornoj gidroksilnoj gruppe na rastushem polisaharide Poskolku lyubaya iz gidroksilnyh grupp v kolce substrata mozhet byt akceptorami poluchennye polisaharidy mogut imet pryamye ili razvetvlennye struktury Polisaharidy vypolnyayut strukturnye i metabolicheskie funkcii a takzhe mogut byt soedineny s lipidami glikolipidy i belkami glikoproteidy pri pomoshi fermentov oligosaharidtransferaz Zhirnye kisloty izoprenoidy i steroidy Podrobnoe rassmotrenie temy Steroidy i Biosintez zhirnyh kislot Sintez steroidov iz i skvalena Nekotorye promezhutochnye produkty ne pokazany Zhirnye kisloty obrazuyutsya sintazami zhirnyh kislot iz acetil KoA Uglerodnyj skelet zhirnyh kislot udlinyaetsya v cikle reakcij v kotoryh snachala prisoedinyaetsya acetilnaya gruppa dalee karbonilnaya gruppa vosstanavlivaetsya do gidroksilnoj zatem proishodit degidrataciya i posleduyushee vosstanovlenie Fermenty biosinteza zhirnyh kislot klassificiruyut na dve gruppy u zhivotnyh i gribov vse reakcii sinteza zhirnyh kislot osushestvlyayutsya odnim mnogofunkcionalnym belkom I tipa v plastidah rastenij i u bakterij kazhdyj etap kataliziruyut otdelnye fermenty II tipa Terpeny i terpenoidy yavlyayutsya predstavitelyami samogo mnogochislennogo klassa rastitelnyh naturalnyh produktov Predstaviteli dannoj gruppy veshestv yavlyayutsya proizvodnymi izoprena i obrazuyutsya iz aktivirovannyh predshestvennikov i kotorye v svoyu ochered obrazuyutsya v raznyh reakciyah obmena veshestv U zhivotnyh i arhej izopentilpirofosfat i dimetilallilpirofosfat sinteziruyutsya iz acetil KoA v mevalonatnom puti v to vremya kak u rastenij i bakterij substratami ne mevalonatnogo puti yavlyayutsya piruvat i gliceraldegid 3 fosfat V reakciyah biosinteza steroidov molekuly izoprena obedinyayutsya i obrazuyut skvaleny kotorye dalee formiruyut ciklicheskie struktury s obrazovaniem lanosterola Lanosterol mozhet byt preobrazovan v drugie steroidy naprimer holesterin i Belki Podrobnoe rassmotrenie temy Biosintez belka Organizmy razlichayutsya po sposobnosti k sintezu 20 obshih aminokislot Bolshinstvo bakterij i rastenij mogut sintezirovat vse 20 no mlekopitayushie sposobny sintezirovat lish 10 zamenimyh aminokislot Takim obrazom v sluchae mlekopitayushih 9 nezamenimyh aminokislot dolzhny byt polucheny iz pishi Nekotorye prostye parazity takie kak bakterii Mycoplasma pneumoniae ne sinteziruyut vse aminokisloty i poluchayut ih neposredstvenno ot svoih hozyaev Vse aminokisloty sinteziruyutsya iz promezhutochnyh produktov glikoliza cikla limonnoj kisloty ili pentozomonofosfatnogo puti Perenos aminogrupp s aminokislot na alfa ketokisloty nazyvaetsya transaminirovaniem Donorami aminogrupp yavlyayutsya glutamat i glutamin Vtorostepennyj sintez aminokislot zavisit ot obrazovaniya sootvetstvuyushej alfa ketokisloty kotoraya zatem podvergaetsya transaminirovaniyu s obrazovaniem aminokisloty Aminokisloty soedinyonnymi peptidnymi svyazyami obrazuyut belki Kazhdyj belok imeet unikalnuyu posledovatelnost aminokislotnyh ostatkov pervichnaya struktura belka Podobno tomu kak bukvy alfavita mogut kombinirovatsya s obrazovaniem pochti beskonechnyh variacij slov aminokisloty mogut svyazyvatsya v toj ili inoj posledovatelnosti i formirovat raznoobraznye belki Belki sostoyat iz aminokislot kotorye byli aktivirovany putem prisoedineniya k molekule perenosnoj RNK cherez efirnuyu svyaz Ferment Aminoacil tRNK sintetaza kataliziruet ATR zavisimoe prisoedinenie aminokislot k tRNK slozhnoefirnymi svyazyami pri etom obrazuyutsya aminoacil tRNK Aminoacil tRNK yavlyayutsya substratami dlya ribosom kotoraya obedinyayut aminokisloty v dlinnye polipeptidnye cepochki ispolzuya matricu mRNK Nukleotidy Podrobnoe rassmotrenie temy Purin i pirimidin Nukleotidy obrazuyutsya iz aminokislot uglekislogo gaza i muravinoj kisloty v cepi reakcij dlya protekaniya kotoryh trebuetsya bolshoe kolichestvo energii Imenno poetomu bolshinstvo organizmov imeyut effektivnye sistemy sohraneniya ranee sintezirovannyh nukleotidov i azotistyh osnovanij Puriny sinteziruyutsya kak nukleozidy v osnovnom svyazannye s ribozoj Adenin i guanin obrazuyutsya iz inozin monofosfata kotoryj sinteziruetsya iz glicina glutamina i aspartata pri uchastii metenil tetragidrofolata Pirimidiny sinteziruyutsya iz orotata kotoryj obrazuetsya iz glutamina i aspartata Ksenobiotiki i okislitelnyj metabolizmPodrobnoe rassmotrenie temy Antioksidanty Vse organizmy postoyanno podvergayutsya vozdejstviyu soedinenij nakoplenie kotoryh mozhet byt vredno dlya kletok Takie potencialno opasnye chuzherodnye soedineniya nazyvayutsya ksenobiotikami Ksenobiotiki naprimer sinteticheskie lekarstva i yady prirodnogo proishozhdeniya detoksificiruyutsya specializirovannymi fermentami U cheloveka takie fermenty predstavleny naprimer citohrom oksidazami i glutation S transferazoj Eta sistema fermentov dejstvuet v tri etapa na pervoj stadii ksenobiotiki okislyayutsya zatem proishodit konyugirovanie vodorastvorimyh grupp v molekuly dalee modificirovannye vodorastvorimye ksenobiotiki mogut byt udaleny iz kletok i metabolizirovany pered ih ekskreciej Opisannye reakcii igrayut vazhnuyu rol v razlozhenii mikrobami zagryaznyayushih veshestv i bioremediacii zagryaznyonnyh zemel i razlivov nefti Mnogie podobnye reakcii protekayut pri uchastii mnogokletochnyh organizmov odnako vvidu neveroyatnogo raznoobraziya mikroorganizmy spravlyayutsya s gorazdo bolee shirokim spektrom ksenobiotikov chem mnogokletochnye organizmy i sposobny dazhe razrushat stojkie organicheskie zagryazniteli naprimer hlororganicheskie soedineniya Svyazannoj s etim problemoj dlya aerobnyh organizmov yavlyaetsya oksidativnyj stress V processe okislitelnogo fosforilirovaniya i obrazovaniya disulfidnyh svyazej pri ukladke belka obrazuyutsya aktivnye formy kisloroda naprimer peroksid vodoroda Eti povrezhdayushie oksidanty udalyayutsya antioksidantami naprimer glutationom i fermentami katalazoj i Termodinamika zhivyh organizmovZhivye organizmy podchinyayutsya nachalam termodinamiki kotorye opisyvayut prevrasheniya tepla i raboty Vtoroe nachalo termodinamiki glasit chto v lyuboj izolirovannoj sisteme entropiya ne umenshaetsya Hotya mozhet pokazatsya chto neveroyatnaya slozhnost zhivyh organizmov protivorechit etomu zakonu zhizn vozmozhna tak kak vse organizmy yavlyayutsya otkrytymi sistemami kotorye obmenivayutsya veshestvom i energiej s okruzhayushej sredoj Takim obrazom zhivye sistemy ne nahodyatsya v termodinamicheskom ravnovesii no vmesto etogo vystupayut dissipativnoj sistemoj kotoraya podderzhivaet svoyo sostoyanie slozhnoj organizovannosti vyzyvaya bolshee uvelichenie entropii okruzhayushej sredoj V metabolizme kletok eto dostigaetsya putyom sochetaniya spontannyh processov katabolizma i nespontannyh processov anabolizma V termodinamicheskih usloviyah metabolizm podderzhivaet poryadok za schyot sozdaniya besporyadka Regulyaciya i kontrolPodrobnoe rassmotrenie temy Gormony i Peredacha signala v kletke Gomeostazom nazyvayut postoyanstvo vnutrennej sredy organizma Tak kak vneshnyaya sreda okruzhayushaya bolshinstvo organizmov postoyanno menyaetsya dlya podderzhaniya postoyannyh uslovij vnutri kletok reakcii obmena veshestv dolzhny tochno regulirovatsya Regulyaciya metabolizma pozvolyaet organizmam otvechat na signaly i aktivno vzaimodejstvovat s okruzhayushej sredoj V sluchae fermenta regulyaciya zaklyuchaetsya v povyshenii i snizhenii ego aktivnosti v otvet na signaly S drugoj storony ferment okazyvaet nekotoryj kontrol nad metabolicheskim putyom kotoryj opredelyaetsya kak effekt ot izmeneniya aktivnosti fermenta na dannyj metabolicheskij put Vliyanie insulina na pogloshenie glyukozy i obmen veshestv Insulin svyazyvaetsya so svoim receptorom 1 kotoryj v svoyu ochered zapuskaet kaskad reakcij aktivacii mnozhestva belkov 2 K nim otnosyatsya translokaciya perenoschika GLUT4 k plazmaticheskoj membrane i postuplenie glyukozy v kletku 3 sintez glikogena 4 glikoliz 5 i sintez zhirnyh kislot 6 Vydelyayut neskolko urovnej regulyacii metabolizma V metabolicheskom puti proishodit samoregulyaciya na urovne substrata ili produkta naprimer umenshenie kolichestva produkta mozhet kompensirovanno uvelichit potok substrata reakcii po dannomu puti Etot tip regulirovaniya chasto vklyuchaet aktivnosti nekotoryh fermentov v metabolicheskih putyah Vneshnij kontrol vklyuchaet kletku mnogokletochnogo organizma izmenyayushuyu svoj metabolizm v otvet na signaly ot drugih kletok Eti signaly kak pravilo v vide rastvorimyh messendzherov naprimer gormony i faktory rosta opredelyayutsya specificheskimi receptorami na poverhnosti kletok Zatem eti signaly peredayutsya vnutr kletki sistemoj vtorichnyh messendzherov kotorye zachastuyu svyazany s fosforilirovaniem belkov Horosho izuchennyj primer vneshnego kontrolya regulyaciya metabolizma glyukozy insulinom Insulin vyrabatyvaetsya v otvet na povyshenie urovnya glyukozy v krovi Gormon svyazyvaetsya s insulinovym receptorom na poverhnosti kletki zatem aktiviruetsya kaskad proteinkinaz kotorye obespechivayut pogloshenie molekul glyukozy kletkami i preobrazovyvayut ih v molekuly zhirnyh kislot i glikogena Metabolizm glikogena kontroliruetsya aktivnostyu fermenta kotoryj rassheplyaet glikogen i fermenta kotoryj obrazuet ego Eti fermenty vzaimosvyazany fosforilirovanie ingibiruetsya glikogensintazoj no aktiviruetsya fosforilazoj Insulin vyzyvaet sintez glikogena putyom aktivacii belkovyh fosfataz i umenshaet fosforilirovanie etih fermentov EvolyuciyaPodrobnoe rassmotrenie temy Filogenetika Filogeneticheskoe derevo pokazyvaet obshee proishozhdenie organizmov vo vseh tryoh domenah Bakterii okrasheny golubym eukarioty krasnym i arhei zelyonym Vzaimosvyazannye pozicii nekotoryh tipov pokazany vokrug dereva Glavnye puti metabolizma opisannye vyshe naprimer glikoliza i cikla Krebsa prisutstvuyut u vseh tryoh domenah zhivyh sushestv i obnaruzhivayutsya u poslednego universalnogo obshego predka Etot universalnyj predok byl prokariotom i veroyatno metanogenom s aminokislotnym nukleotidnym uglevodnym metabolizmom Sohranenie etih drevnih metabolicheskih putej v evolyucii mozhet byt rezultatom togo chto eti reakcii optimalny dlya resheniya konkretnyh problem s metabolizmom Tak konechnye produkty glikoliza i cikla Krebsa obrazuyutsya s vysokoj effektivnostyu i s minimalnym kolichestvom stadij Pervye metabolicheskie puti na osnove fermentov mogli byt chastyami purinovogo metabolizma nukleotidov s predydushim metabolicheskih putej i byli chastyu drevnego mira RNK Mnogie modeli byli predlozheny dlya opisaniya mehanizmov posredstvom kotoryh novye metabolicheskie puti evolyucionirovali K nim otnosyatsya posledovatelnoe dobavlenie novyh fermentov na korotkij predkovyj put duplikaciya a zatem divergenciya vseh putej a takzhe nabor uzhe sushestvuyushih fermentov i ih sborka v novyj put reakcij Otnositelnaya vazhnost etih mehanizmov neyasna odnako genomnye issledovaniya pokazali chto fermenty v metabolicheskom puti skoree vsego imeyut obshee proishozhdenie esli predpolagat chto mnogie puti evolyucionirovali shag za shagom s novymi funkciyami sozdannymi iz uzhe sushestvuyushih etapov puti Alternativnaya model osnovana na issledovaniyah v kotoryh proslezhivaetsya evolyuciya struktury belkov v metabolicheskih svyazyah predpolagayut chto fermenty sobiralis dlya vypolneniya shozhih funkcij v razlichnyh metabolicheskih putyah Eti processy sborki priveli k evolyucionirovaniyu fermentativnoj mozaiki Nekotorye chasti obmena veshestv vozmozhno sushestvovali v kachestve modulej kotorye mogli byt povtorno ispolzovany v razlichnyh putyah dlya vypolneniya shozhih funkcij Evolyuciya takzhe mozhet privodit k potere metabolicheskih funkcij Naprimer u nekotoryh parazitov metabolicheskie processy kotorye ne vazhny dlya vyzhivaniya utracheny i gotovye aminokisloty nukleotidy i uglevody poluchayutsya ot hozyaina Podobnye uprosheniya metabolicheskih vozmozhnostej nablyudayut u endosimbioticheskih organizmov Metody issledovaniyaPodrobnoe rassmotrenie temy Proteomika i Metabonomika Metabolicheskaya set cikla Krebsa Arabidopsis thaliana Fermenty i metabolity oboznacheny krasnymi kvadratami a vzaimodejstviya mezhdu nimi kak chyornye linii Klassicheski metabolizm izuchaetsya uproshyonnym podhodom kotoryj fokusiruetsya na odnom metabolicheskom puti Osobenno cenno ispolzovanie mechenyh atomov na organizmennom tkanevom i kletochnom urovnyah kotorye opredelyayut puti ot predshestvennikov do konechnyh produktov putyom vyyavleniya radioaktivno mechenyh promezhutochnyh produktov Fermenty kotorye kataliziruyut eti himicheskie reakcii mogut zatem byt vydeleny dlya issledovaniya ih kinetiki i otveta na ingibitory Parallelnyj podhod zaklyuchaetsya v vyyavlenii nebolshih molekul v kletki ili tkani polnyj nabor etih molekul nazyvaetsya V celom eti issledovaniya dayut horoshee predstavlenie o strukture i funkciyah prostyh putej metabolizma no nedostatochny v primenenii k bolee slozhnyh sistemam naprimer polnoj metabolizm kletki Ideya slozhnosti metabolicheskih setej v kletkah kotorye soderzhat tysyachi razlichnyh fermentov otrazhena na izobrazhenii sprava pokazyvayushem vzaimodejstviya tolko mezhdu 43 belkami i 40 metabolitami kotorye reguliruyutsya 45 000 genov Tem ne menee sejchas mozhno ispolzovat takie dannye o genomah dlya vossozdaniya polnoj seti biohimicheskih reakcij i obrazovyvat bolee celostnye matematicheskie modeli kotorye mogut obyasnit i predskazat ih povedenie Eti modeli osobenno silny kogda ispolzuyutsya dlya integracii dannyh o putyah i metabolitah poluchennyh na osnove klassicheskih metodov s dannymi po ekspressii genov iz proteomnyh i DNK mikrochipovyh issledovanij S pomoshyu etih metodov v nastoyashee vremya sozdayotsya model chelovecheskogo metabolizma kotoraya budet sluzhit orientirom dlya budushih issledovanij lekarstv i biohimicheskih issledovanij Eti modeli v nastoyashee vremya ispolzuyutsya v analizah seti dlya klassifikacii boleznej cheloveka po gruppam kotorye razlichayutsya po obshim belkam ili metabolitam Yarkij primer bakterialnyh metabolicheskih setej ustrojstvo galstuk babochki struktura kotoroj pozvolyaet vvodit shirokij spektr pitatelnyh veshestv i proizvodit bolshoe raznoobrazie produktov i slozhnyh makromolekul ispolzuya sravnitelno nemnogo obshih promezhutochnyh veshestv Osnovnaya tehnologicheskaya osnova etoj informacii Zdes organizmy naprimer drozhzhi rasteniya ili bakterii geneticheski modificiruyutsya chtoby sdelat ih bolee effektivnymi v biotehnologii i pomoch v proizvodstve lekarstv naprimer antibiotikov ili promyshlennyh himicheskih veshestv takih kak i shikimovoj kisloty Eti geneticheskie modifikacii obychno napravleny na umenshenie kolichestva energii ispolzuemoj dlya proizvodstva produkcii povysheniya urozhajnosti i snizheniya proizvodstvennyh othodov IstoriyaPodrobnoe rassmotrenie temy i Istoriya molekulyarnoj biologiiSantorio vzveshivaet sam sebya do i posle prinyatiya pishi iz Ars de statica medicina vpervye opublikovannoj v 1614 godu Termin metabolizm vpervye vvedyon byl v biologiyu Teodorom Shvannom v 1840 h godah odnako ne poluchil shirokogo ispolzovaniya Termin ustoyalsya v fiziologii i pronik v bolshinstvo yazykov posle izdaniya i perevoda rukovodstva po fiziologii Fostera v 1870 h godah Istoriya izucheniya metabolizma ohvatyvaet neskolko stoletij Issledovaniya nachinalis s izucheniya organizmov zhivotnyh v sovremennoj biohimii izuchayut otdelnye metabolicheskie reakcii Ponyatie obmena veshestv vpervye vstrechaetsya v rabotah 1213 1288 kotoryj pisal chto telo i ego chasti nahodyatsya v postoyannom sostoyanii raspada i pitaniya tak chto ono neizbezhno preterpevaet postoyannye izmeneniya Pervye kontroliruemye eksperimenty po metabolizmu u cheloveka byli opublikovany Santorio Santorio v 1614 godu v knige ital Ars de statica medicina On rasskazal kak on sam vzvesil sebya do i posle priyoma pishi sna raboty seksa natoshak posle pitya i vydeleniya mochi On obnaruzhil chto bolshaya chast pishi kotoruyu on prinyal byla utrachena v rezultate processa nazvannogo nezametnym ispareniem V rannih issledovaniyah mehanizmy metabolicheskih reakcij ne byli obnaruzheny i schitalos chto zhivoj tkanyu upravlyaet zhivaya sila V XIX veke pri issledovanii fermentacii sahara spirta drozhzhami Lui Paster sdelal vyvod chto brozhenie kataliziruetsya veshestvami iz drozhzhevyh kletok kotorye on nazval fermentami Paster pisal chto alkogolnoe brozhenie dejstvie svyazannoe s zhiznyu i organizuetsya drozhzhevymi kletkami ne svyazano so smertyu ili razlozheniem kletok Eto otkrytie vmeste s publikaciej Fridriha Vyolera v 1828 godu o himicheskom sinteze mocheviny dokazalo chto organicheskie soedineniya i himicheskie reakcii obnaruzhennye v kletkah ne imeyut razlichij v principe kak i lyubye drugie razdely himii Otkrytie fermentov v nachale XX veka Eduardom Buhnerom razdelilo izuchenie metabolicheskih reakcij ot izucheniya kletok i dalo nachalo razvitiyu biohimii kak nauki Odnim iz uspeshnyh biohimikov nachala dvadcatogo veka byl Hans Adolf Krebs kotoryj vnyos ogromnyj vklad v izuchenie metabolizma Krebs opisal cikl mocheviny i pozdnee rabotaya vmeste s Hansom Kornbergom cikl limonnoj kisloty i glioksilatnyj cikl V sovremennyh biohimicheskih issledovaniyah shiroko ispolzuyut novye metody takie kak hromatografiya rentgenostrukturnyj analiz YaMR spektroskopiya elektronnaya mikroskopiya i metod klassicheskoj molekulyarnoj dinamiki Eti metody pozvolyayut otkryvat i podrobno izuchat mnozhestvo molekul i metabolicheskih putej v kletkah Sm takzheV Vikislovare est statya metabolizm Zakon Klajbera Radiosintez EspenPrimechaniyaFriedrich C Physiology and genetics of sulfur oxidizing bacteria angl angl journal Academic Press 1998 Vol 39 P 235 289 doi 10 1016 S0065 2911 08 60018 1 PMID 9328649 Pace N R The universal nature of biochemistry angl Proceedings of the National Academy of Sciences of the United States of America journal 2001 January vol 98 no 3 P 805 808 doi 10 1073 pnas 98 3 805 PMID 11158550 PMC 33372 Smith E Morowitz H Universality in intermediary metabolism angl Proceedings of the National Academy of Sciences of the United States of America journal 2004 Vol 101 no 36 P 13168 13173 doi 10 1073 pnas 0404922101 PMID 15340153 PMC 516543 2 iyunya 2020 goda Ebenhoh O Heinrich R Evolutionary optimization of metabolic pathways Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems angl Bull Math Biol journal 2001 Vol 63 no 1 P 21 55 doi 10 1006 bulm 2000 0197 PMID 11146883 Melendez Hevia E Waddell T Cascante M The puzzle of the Krebs citric acid cycle assembling the pieces of chemically feasible reactions and opportunism in the design of metabolic pathways during evolution angl angl journal 1996 Vol 43 no 3 P 293 303 doi 10 1007 BF02338838 PMID 8703096 Michie K Lowe J Dynamic filaments of the bacterial cytoskeleton angl angl journal 2006 Vol 75 P 467 492 doi 10 1146 annurev biochem 75 103004 142452 PMID 16756499 Nelson David L Michael M Cox Lehninger Principles of Biochemistry neopr New York W H Freeman and company 2005 S 841 ISBN 0 7167 4339 6 J K Kelleher B M Bryan R T Mallet A L Holleran A N Murphy Analysis of tricarboxylic acid cycle metabolism of hepatoma cells by comparison of 14CO2 ratios The Biochemical Journal 1987 09 15 T 246 vyp 3 S 633 639 ISSN 0264 6021 doi 10 1042 bj2460633 22 sentyabrya 2022 goda John S Hothersall Aamir Ahmed Metabolic fate of the increased yeast amino Acid uptake subsequent to catabolite derepression Journal of Amino Acids 2013 T 2013 S 461901 ISSN 2090 0104 doi 10 1155 2013 461901 22 sentyabrya 2022 goda Fahy E Subramaniam S Brown H Glass C Merrill A Murphy R Raetz C Russell D Seyama Y Shaw W Shimizu T Spener F van Meer G VanNieuwenhze M White S Witztum J Dennis E A comprehensive classification system for lipids angl angl journal 2005 Vol 46 no 5 P 839 861 doi 10 1194 jlr E400004 JLR200 PMID 15722563 24 avgusta 2010 goda Nomenclature of Lipids neopr IUPAC IUB Commission on Biochemical Nomenclature CBN Data obrasheniya 8 marta 2007 Arhivirovano 22 avgusta 2011 goda Hegardt F Mitochondrial 3 hydroxy 3 methylglutaryl CoA synthase a control enzyme in ketogenesis angl angl journal 1999 Vol 338 no Pt 3 P 569 582 doi 10 1042 0264 6021 3380569 PMID 10051425 PMC 1220089 Raman R Raguram S Venkataraman G Paulson J Sasisekharan R Glycomics an integrated systems approach to structure function relationships of glycans angl Nat Methods journal 2005 Vol 2 no 11 P 817 824 doi 10 1038 nmeth807 PMID 16278650 Sierra S Kupfer B Kaiser R Basics of the virology of HIV 1 and its replication angl J Clin Virol journal 2005 Vol 34 no 4 P 233 244 doi 10 1016 j jcv 2005 09 004 PMID 16198625 Wimmer M Rose I Mechanisms of enzyme catalyzed group transfer reactions angl angl journal 1978 Vol 47 P 1031 1078 doi 10 1146 annurev bi 47 070178 005123 PMID 354490 Mitchell P The Ninth Sir Hans Krebs Lecture Compartmentation and communication in living systems Ligand conduction a general catalytic principle in chemical osmotic and chemiosmotic reaction systems angl angl journal 1979 Vol 95 no 1 P 1 20 doi 10 1111 j 1432 1033 1979 tb12934 x PMID 378655 Dimroth P von Ballmoos C Meier T Catalytic and mechanical cycles in F ATP synthases Fourth in the Cycles Review Series angl angl journal 2006 March vol 7 no 3 P 276 282 doi 10 1038 sj embor 7400646 PMID 16607397 PMC 1456893 Coulston Ann Kerner John Hattner JoAnn Srivastava Ashini Stanford School of Medicine Nutrition Courses angl SUMMIT 2006 Pollak N Dolle C Ziegler M The power to reduce pyridine nucleotides small molecules with a multitude of functions angl angl journal 2007 Vol 402 no 2 P 205 218 doi 10 1042 BJ20061638 PMID 17295611 PMC 1798440 Heymsfield S Waki M Kehayias J Lichtman S Dilmanian F Kamen Y Wang J Pierson R Chemical and elemental analysis of humans in vivo using improved body composition models angl angl journal 1991 Vol 261 no 2 Pt 1 P E190 8 PMID 1872381 Sychrova H Yeast as a model organism to study transport and homeostasis of alkali metal cations angl Physiol Res journal 2004 Vol 53 Suppl 1 P S91 8 PMID 15119939 25 oktyabrya 2011 goda Levitan I Modulation of ion channels in neurons and other cells angl Annu Rev Neurosci journal 1988 Vol 11 P 119 136 doi 10 1146 annurev ne 11 030188 001003 PMID 2452594 Dulhunty A Excitation contraction coupling from the 1950s into the new millennium angl angl journal 2006 Vol 33 no 9 P 763 772 doi 10 1111 j 1440 1681 2006 04441 x PMID 16922804 Mahan D Shields R Macro and micromineral composition of pigs from birth to 145 kilograms of body weight angl angl journal 1998 Vol 76 no 2 P 506 512 PMID 9498359 30 aprelya 2011 goda Husted S Mikkelsen B Jensen J Nielsen N Elemental fingerprint analysis of barley Hordeum vulgare using inductively coupled plasma mass spectrometry isotope ratio mass spectrometry and multivariate statistics angl angl journal 2004 Vol 378 no 1 P 171 182 doi 10 1007 s00216 003 2219 0 PMID 14551660 Finney L O Halloran T Transition metal speciation in the cell insights from the chemistry of metal ion receptors angl Science journal 2003 Vol 300 no 5621 P 931 936 doi 10 1126 science 1085049 PMID 12738850 Cousins R Liuzzi J Lichten L Mammalian zinc transport trafficking and signals angl J Biol Chem journal 2006 Vol 281 no 34 P 24085 24089 doi 10 1074 jbc R600011200 PMID 16793761 5 noyabrya 2008 goda Dunn L Rahmanto Y Richardson D Iron uptake and metabolism in the new millennium angl angl journal 2007 Vol 17 no 2 P 93 100 doi 10 1016 j tcb 2006 12 003 PMID 17194590 Mikrobiologiya uchebnik dlya stud vyssh ucheb zavedenij A I Netrusov I B Kotova M Izdatelskij centr Akademiya 2006 352 s ISBN 5 7695 2583 5 Mikrobiologiya uchebnik dlya stud biol specialnostej vuzov M V Gusev L A Mineeva 4 e izd ster M Izdatelskij centr Akademiya 2003 464 s ISBN 5 7695 1403 5 Pinevich A V Mikrobiologiya Biologiya prokariotov Uchebnik V 3 t Tom 2 SPb Izd vo S Peterb un ta 2007 331 s s ISBN ISBN 978 5 288 04269 0 t II ISBN 5 288 04056 7 A Lwoff C B van Neil F J Ryan et al Nomenclature of nutritional types of microorganisms 1946 7 noyabrya 2017 goda Nealson K Conrad P Life past present and future angl Philos Trans R Soc Lond B Biol Sci journal 1999 Vol 354 no 1392 P 1923 1939 doi 10 1098 rstb 1999 0532 PMID 10670014 PMC 1692713 17 marta 2020 goda Nelson N Ben Shem A The complex architecture of oxygenic photosynthesis angl Nat Rev Mol Cell Biol journal 2004 Vol 5 no 12 P 971 982 doi 10 1038 nrm1525 PMID 15573135 Hase C Finkelstein R Bacterial extracellular zinc containing metalloproteases rum angl angl 1993 Decembrie t 57 nr 4 P 823 837 PMID 8302217 PMC 372940 Gupta R Gupta N Rathi P Bacterial lipases an overview of production purification and biochemical properties angl angl journal Springer 2004 Vol 64 no 6 P 763 781 doi 10 1007 s00253 004 1568 8 PMID 14966663 Hoyle T The digestive system linking theory and practice neopr Br J Nurs 1997 T 6 22 S 1285 1291 PMID 9470654 Souba W Pacitti A How amino acids get into cells mechanisms models menus and mediators angl JPEN J Parenter Enteral Nutr journal 1992 Vol 16 no 6 P 569 578 doi 10 1177 0148607192016006569 PMID 1494216 Barrett M Walmsley A Gould G Structure and function of facilitative sugar transporters angl angl journal Elsevier 1999 Vol 11 no 4 P 496 502 doi 10 1016 S0955 0674 99 80072 6 PMID 10449337 Bell G Burant C Takeda J Gould G Structure and function of mammalian facilitative sugar transporters angl J Biol Chem journal 1993 Vol 268 no 26 P 19161 19164 PMID 8366068 Bouche C Serdy S Kahn C Goldfine A The cellular fate of glucose and its relevance in type 2 diabetes angl angl journal angl 2004 Vol 25 no 5 P 807 830 doi 10 1210 er 2003 0026 PMID 15466941 Arhivirovano 4 dekabrya 2012 goda Sakami W Harrington H Amino acid metabolism angl angl journal 1963 Vol 32 P 355 398 doi 10 1146 annurev bi 32 070163 002035 PMID 14144484 Brosnan J Glutamate at the interface between amino acid and carbohydrate metabolism angl angl journal 2000 Vol 130 no 4S Suppl P 988S 90S PMID 10736367 28 fevralya 2007 goda Young V Ajami A Glutamine the emperor or his clothes angl angl journal 2001 Vol 131 no 9 Suppl P 2449S 59S discussion 2486S 7S PMID 11533293 30 noyabrya 2006 goda Hosler J Ferguson Miller S Mills D Energy transduction proton transfer through the respiratory complexes angl angl journal 2006 Vol 75 P 165 187 doi 10 1146 annurev biochem 75 062003 101730 PMID 16756489 PMC 2659341 Schultz B Chan S Structures and proton pumping strategies of mitochondrial respiratory enzymes angl Annu Rev Biophys Biomol Struct journal 2001 Vol 30 P 23 65 doi 10 1146 annurev biophys 30 1 23 PMID 11340051 Capaldi R Aggeler R Mechanism of the F 1 F 0 type ATP synthase a biological rotary motor angl angl journal 2002 Vol 27 no 3 P 154 160 doi 10 1016 S0968 0004 01 02051 5 PMID 11893513 Friedrich B Schwartz E Molecular biology of hydrogen utilization in aerobic chemolithotrophs angl Annu Rev Microbiol journal 1993 Vol 47 P 351 383 doi 10 1146 annurev mi 47 100193 002031 PMID 8257102 Weber K Achenbach L Coates J Microorganisms pumping iron anaerobic microbial iron oxidation and reduction angl Nat Rev Microbiol journal 2006 Vol 4 no 10 P 752 764 doi 10 1038 nrmicro1490 PMID 16980937 Jetten M Strous M van de Pas Schoonen K Schalk J van Dongen U van de Graaf A Logemann S Muyzer G van Loosdrecht M Kuenen J The anaerobic oxidation of ammonium neopr FEMS Microbiol Rev 1998 T 22 5 S 421 437 doi 10 1111 j 1574 6976 1998 tb00379 x PMID 9990725 Simon J Enzymology and bioenergetics of respiratory nitrite ammonification angl FEMS Microbiol Rev journal 2002 Vol 26 no 3 P 285 309 doi 10 1111 j 1574 6976 2002 tb00616 x PMID 12165429 Conrad R Soil microorganisms as controllers of atmospheric trace gases H2 CO CH4 OCS N2O and NO angl angl journal angl 1996 Vol 60 no 4 P 609 640 PMID 8987358 PMC 239458 Barea J Pozo M Azcon R Azcon Aguilar C Microbial co operation in the rhizosphere angl Journal of Experimental Botany journal Oxford University Press 2005 Vol 56 no 417 P 1761 1778 doi 10 1093 jxb eri197 PMID 15911555 2 dekabrya 2006 goda van der Meer M Schouten S Bateson M Nubel U Wieland A Kuhl M de Leeuw J Sinninghe Damste J Ward D Diel variations in carbon metabolism by green nonsulfur like bacteria in alkaline siliceous hot spring microbial mats from Yellowstone National Park angl angl journal 2005 July vol 71 no 7 P 3978 3986 doi 10 1128 AEM 71 7 3978 3986 2005 PMID 16000812 PMC 1168979 Tichi M Tabita F Interactive control of Rhodobacter capsulatus redox balancing systems during phototrophic metabolism angl angl journal 2001 Vol 183 no 21 P 6344 6354 doi 10 1128 JB 183 21 6344 6354 2001 PMID 11591679 PMC 100130 Allen J Williams J Photosynthetic reaction centers angl angl journal 1998 Vol 438 no 1 2 P 5 9 doi 10 1016 S0014 5793 98 01245 9 PMID 9821949 Munekage Y Hashimoto M Miyake C Tomizawa K Endo T Tasaka M Shikanai T Cyclic electron flow around photosystem I is essential for photosynthesis angl Nature journal 2004 Vol 429 no 6991 P 579 582 doi 10 1038 nature02598 PMID 15175756 Miziorko H Lorimer G Ribulose 1 5 bisphosphate carboxylase oxygenase angl angl journal 1983 Vol 52 P 507 535 doi 10 1146 annurev bi 52 070183 002451 PMID 6351728 Dodd A Borland A Haslam R Griffiths H Maxwell K Crassulacean acid metabolism plastic fantastic angl Journal of Experimental Botany journal Oxford University Press 2002 Vol 53 no 369 P 569 580 doi 10 1093 jexbot 53 369 569 PMID 11886877 25 yanvarya 2009 goda Hugler M Wirsen C Fuchs G Taylor C Sievert S Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the epsilon subdivision of proteobacteria angl angl journal 2005 May vol 187 no 9 P 3020 3027 doi 10 1128 JB 187 9 3020 3027 2005 PMID 15838028 PMC 1082812 Strauss G Fuchs G Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus the 3 hydroxypropionate cycle angl angl journal 1993 Vol 215 no 3 P 633 643 doi 10 1111 j 1432 1033 1993 tb18074 x PMID 8354269 Wood H Life with CO or CO2 and H2 as a source of carbon and energy angl angl journal angl 1991 Vol 5 no 2 P 156 163 PMID 1900793 5 avgusta 2007 goda Shively J van Keulen G Meijer W Something from almost nothing carbon dioxide fixation in chemoautotrophs angl Annu Rev Microbiol journal 1998 Vol 52 P 191 230 doi 10 1146 annurev micro 52 1 191 PMID 9891798 Boiteux A Hess B Design of glycolysis angl Philos Trans R Soc Lond B Biol Sci journal 1981 Vol 293 no 1063 P 5 22 doi 10 1098 rstb 1981 0056 PMID 6115423 Pilkis S el Maghrabi M Claus T Fructose 2 6 bisphosphate in control of hepatic gluconeogenesis From metabolites to molecular genetics angl angl journal 1990 Vol 13 no 6 P 582 599 doi 10 2337 diacare 13 6 582 PMID 2162755 Ensign S Revisiting the glyoxylate cycle alternate pathways for microbial acetate assimilation angl angl journal angl 2006 Vol 61 no 2 P 274 276 doi 10 1111 j 1365 2958 2006 05247 x PMID 16856935 Finn P Dice J Proteolytic and lipolytic responses to starvation neopr Nutrition 2006 T 22 7 8 S 830 844 doi 10 1016 j nut 2006 04 008 PMID 16815497 Kornberg H Krebs H Synthesis of cell constituents from C2 units by a modified tricarboxylic acid cycle angl Nature journal 1957 Vol 179 no 4568 P 988 991 doi 10 1038 179988a0 PMID 13430766 Rhys D Evans Lisa C Heather Metabolic pathways and abnormalities angl Surgery Oxford 2016 06 Vol 34 iss 6 P 266 272 doi 10 1016 j mpsur 2016 03 010 11 avgusta 2022 goda Hudson H Freeze Gerald W Hart Ronald L Schnaar Glycosylation Precursors Essentials of Glycobiology Ajit Varki Richard D Cummings Jeffrey D Esko Pamela Stanley Gerald W Hart Markus Aebi Alan G Darvill Taroh Kinoshita Nicolle H Packer James H Prestegard Ronald L Schnaar Peter H Seeberger Cold Spring Harbor NY Cold Spring Harbor Laboratory Press 2015 24 fevralya 2022 goda Opdenakker G Rudd P Ponting C Dwek R Concepts and principles of glycobiology angl angl journal angl 1993 Vol 7 no 14 P 1330 1337 PMID 8224606 18 iyunya 2007 goda McConville M Menon A Recent developments in the cell biology and biochemistry of glycosylphosphatidylinositol lipids review angl angl journal 2000 Vol 17 no 1 P 1 16 doi 10 1080 096876800294443 PMID 10824734 Chirala S Wakil S Structure and function of animal fatty acid synthase angl Lipids journal 2004 Vol 39 no 11 P 1045 1053 doi 10 1007 s11745 004 1329 9 PMID 15726818 White S Zheng J Zhang Y The structural biology of type II fatty acid biosynthesis angl angl journal 2005 Vol 74 P 791 831 doi 10 1146 annurev biochem 74 082803 133524 PMID 15952903 Ohlrogge J Jaworski J Regulation of fatty acid synthesis angl Annu Rev Plant Physiol Plant Mol Biol journal 1997 Vol 48 P 109 136 doi 10 1146 annurev arplant 48 1 109 PMID 15012259 Dubey V Bhalla R Luthra R An overview of the non mevalonate pathway for terpenoid biosynthesis in plants angl angl journal 2003 Vol 28 no 5 P 637 646 doi 10 1007 BF02703339 PMID 14517367 15 aprelya 2007 goda Kuzuyama T Seto H Diversity of the biosynthesis of the isoprene units angl angl journal 2003 Vol 20 no 2 P 171 183 doi 10 1039 b109860h PMID 12735695 Grochowski L Xu H White R Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate angl angl journal 2006 May vol 188 no 9 P 3192 3198 doi 10 1128 JB 188 9 3192 3198 2006 PMID 16621811 PMC 1447442 Lichtenthaler H The 1 Ddeoxy D xylulose 5 phosphate pathway of isoprenoid biosynthesis in plants angl Annu Rev Plant Physiol Plant Mol Biol journal 1999 Vol 50 P 47 65 doi 10 1146 annurev arplant 50 1 47 PMID 15012203 Schroepfer G Sterol biosynthesis angl angl journal 1981 Vol 50 P 585 621 doi 10 1146 annurev bi 50 070181 003101 PMID 7023367 Lees N Skaggs B Kirsch D Bard M Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae a review angl Lipids journal 1995 Vol 30 no 3 P 221 226 doi 10 1007 BF02537824 PMID 7791529 R Himmelreich H Hilbert H Plagens E Pirkl B C Li Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae Nucleic Acids Research 1996 11 15 T 24 vyp 22 S 4420 4449 ISSN 0305 1048 doi 10 1093 nar 24 22 4420 22 sentyabrya 2022 goda Guyton Arthur C John E Hall Textbook of Medical Physiology neopr Philadelphia Elsevier 2006 S 855 856 ISBN 0 7216 0240 1 Arthur C Guyton Textbook of medical physiology 11th ed Philadelphia Elsevier Saunders 2006 xxxv 1116 pages s ISBN 0 7216 0240 1 978 0 7216 0240 0 0 8089 2317 X 978 0 8089 2317 6 81 8147 920 3 978 81 8147 920 4 Ibba M Soll D The renaissance of aminoacyl tRNA synthesis angl angl journal 2001 Vol 2 no 5 P 382 387 PMID 11375928 1 maya 2011 goda Lengyel P Soll D Mechanism of protein biosynthesis angl angl journal angl 1969 Vol 33 no 2 P 264 301 PMID 4896351 PMC 378322 Rudolph F The biochemistry and physiology of nucleotides angl angl journal 1994 Vol 124 no 1 Suppl P 124S 127S PMID 8283301 Zrenner R Stitt M Sonnewald U Boldt R Pyrimidine and purine biosynthesis and degradation in plants angl Annu Rev Plant Biol journal 2006 Vol 57 P 805 836 doi 10 1146 annurev arplant 57 032905 105421 PMID 16669783 Stasolla C Katahira R Thorpe T Ashihara H Purine and pyrimidine nucleotide metabolism in higher plants angl Plant Physiology journal American Society of Plant Biologists 2003 Vol 160 no 11 P 1271 1295 doi 10 1078 0176 1617 01169 PMID 14658380 Smith J Enzymes of nucleotide synthesis neopr Curr Opin Struct Biol 1995 T 5 6 S 752 757 doi 10 1016 0959 440X 95 80007 7 PMID 8749362 Testa B Kramer S The biochemistry of drug metabolism an introduction part 1 Principles and overview angl Chem Biodivers journal 2006 Vol 3 no 10 P 1053 1101 doi 10 1002 cbdv 200690111 PMID 17193224 Danielson P The cytochrome P450 superfamily biochemistry evolution and drug metabolism in humans angl angl journal 2002 Vol 3 no 6 P 561 597 doi 10 2174 1389200023337054 PMID 12369887 King C Rios G Green M Tephly T UDP glucuronosyltransferases angl angl journal 2000 Vol 1 no 2 P 143 161 doi 10 2174 1389200003339171 PMID 11465080 Sheehan D Meade G Foley V Dowd C Structure function and evolution of glutathione transferases implications for classification of non mammalian members of an ancient enzyme superfamily angl angl journal 2001 November vol 360 no Pt 1 P 1 16 doi 10 1042 0264 6021 3600001 PMID 11695986 PMC 1222196 20 iyunya 2002 goda Galvao T Mohn W de Lorenzo V Exploring the microbial biodegradation and biotransformation gene pool angl angl journal 2005 Vol 23 no 10 P 497 506 doi 10 1016 j tibtech 2005 08 002 PMID 16125262 Janssen D Dinkla I Poelarends G Terpstra P Bacterial degradation of xenobiotic compounds evolution and distribution of novel enzyme activities angl Environ Microbiol journal 2005 Vol 7 no 12 P 1868 1882 doi 10 1111 j 1462 2920 2005 00966 x PMID 16309386 Davies K Oxidative stress the paradox of aerobic life neopr Biochem Soc Symp 1995 T 61 S 1 31 PMID 8660387 Tu B Weissman J Oxidative protein folding in eukaryotes mechanisms and consequences angl angl journal 2004 Vol 164 no 3 P 341 346 doi 10 1083 jcb 200311055 PMID 14757749 PMC 2172237 8 fevralya 2007 goda Sies H Oxidative stress oxidants and antioxidants angl angl journal 1997 Vol 82 no 2 P 291 295 PMID 9129943 25 marta 2009 goda Vertuani S Angusti A Manfredini S The antioxidants and pro antioxidants network an overview angl angl journal 2004 Vol 10 no 14 P 1677 1694 doi 10 2174 1381612043384655 PMID 15134565 von Stockar U Liu J Does microbial life always feed on negative entropy Thermodynamic analysis of microbial growth angl angl journal 1999 Vol 1412 no 3 P 191 211 doi 10 1016 S0005 2728 99 00065 1 PMID 10482783 Demirel Y Sandler S Thermodynamics and bioenergetics neopr Biophys Chem 2002 T 97 2 3 S 87 111 doi 10 1016 S0301 4622 02 00069 8 PMID 12050002 Albert R Scale free networks in cell biology angl angl journal angl 2005 Vol 118 no Pt 21 P 4947 4957 doi 10 1242 jcs 02714 PMID 16254242 12 yanvarya 2006 goda Brand M Regulation analysis of energy metabolism angl The Journal of Experimental Biology journal angl 1997 Vol 200 no Pt 2 P 193 202 PMID 9050227 29 marta 2007 goda Soyer O Salathe M Bonhoeffer S Signal transduction networks topology response and biochemical processes angl angl journal 2006 Vol 238 no 2 P 416 425 doi 10 1016 j jtbi 2005 05 030 PMID 16045939 Westerhoff H Groen A Wanders R Modern theories of metabolic control and their applications review angl Biosci Rep journal 1984 Vol 4 no 1 P 1 22 doi 10 1007 BF01120819 PMID 6365197 Salter M Knowles R Pogson C Metabolic control neopr Essays Biochem 1994 T 28 S 1 12 PMID 7925313 Fell D Thomas S Physiological control of metabolic flux the requirement for multisite modulation angl angl journal 1995 Vol 311 no Pt 1 P 35 9 PMID 7575476 PMC 1136115 Hendrickson W Transduction of biochemical signals across cell membranes angl Q Rev Biophys journal 2005 Vol 38 no 4 P 321 330 doi 10 1017 S0033583506004136 PMID 16600054 Cohen P The regulation of protein function by multisite phosphorylation a 25 year update angl angl journal 2000 Vol 25 no 12 P 596 601 doi 10 1016 S0968 0004 00 01712 6 PMID 11116185 Lienhard G Slot J James D Mueckler M How cells absorb glucose neopr Sci Am 1992 T 266 1 S 86 91 doi 10 1038 scientificamerican0192 86 PMID 1734513 Roach P Glycogen and its metabolism angl angl journal 2002 Vol 2 no 2 P 101 120 doi 10 2174 1566524024605761 PMID 11949930 Newgard C Brady M O Doherty R Saltiel A Organizing glucose disposal emerging roles of the glycogen targeting subunits of protein phosphatase 1 angl Diabetes journal 2000 Vol 49 no 12 P 1967 1977 doi 10 2337 diabetes 49 12 1967 PMID 11117996 19 iyunya 2007 goda Romano A Conway T Evolution of carbohydrate metabolic pathways neopr Res Microbiol 1996 T 147 6 7 S 448 455 doi 10 1016 0923 2508 96 83998 2 PMID 9084754 Koch A How did bacteria come to be angl angl journal Academic Press 1998 Vol 40 P 353 399 doi 10 1016 S0065 2911 08 60135 6 PMID 9889982 Ouzounis C Kyrpides N The emergence of major cellular processes in evolution angl angl journal 1996 Vol 390 no 2 P 119 123 doi 10 1016 0014 5793 96 00631 X PMID 8706840 Caetano Anolles G Kim H S Mittenthal J E The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture angl Proceedings of the National Academy of Sciences of the United States of America journal 2007 Vol 104 no 22 P 9358 9363 doi 10 1073 pnas 0701214104 PMID 17517598 PMC 1890499 Schmidt S Sunyaev S Bork P Dandekar T Metabolites a helping hand for pathway evolution angl angl journal 2003 Vol 28 no 6 P 336 341 doi 10 1016 S0968 0004 03 00114 2 PMID 12826406 Light S Kraulis P Network analysis of metabolic enzyme evolution in Escherichia coli angl angl journal 2004 Vol 5 P 15 doi 10 1186 1471 2105 5 15 PMID 15113413 PMC 394313 Alves R Chaleil R Sternberg M Evolution of enzymes in metabolism a network perspective angl angl journal 2002 Vol 320 no 4 P 751 770 doi 10 1016 S0022 2836 02 00546 6 PMID 12095253 Kim H S Mittenthal J E Caetano Anolles G MANET tracing evolution of protein architecture in metabolic networks angl angl journal 2006 Vol 19 no 7 P 351 doi 10 1186 1471 2105 7 351 PMID 16854231 PMC 1559654 Teichmann S A Rison S C Thornton J M Riley M Gough J Chothia C Small molecule metabolsim an enzyme mosaic angl angl journal 2001 Vol 19 no 12 P 482 486 doi 10 1016 S0167 7799 01 01813 3 PMID 11711174 Spirin V Gelfand M Mironov A Mirny L A metabolic network in the evolutionary context multiscale structure and modularity angl Proceedings of the National Academy of Sciences of the United States of America journal 2006 June vol 103 no 23 P 8774 8779 doi 10 1073 pnas 0510258103 PMID 16731630 PMC 1482654 12 sentyabrya 2019 goda Lawrence J Common themes in the genome strategies of pathogens angl Curr Opin Genet Dev journal 2005 Vol 15 no 6 P 584 588 doi 10 1016 j gde 2005 09 007 PMID 16188434 Wernegreen J For better or worse genomic consequences of intracellular mutualism and parasitism angl Curr Opin Genet Dev journal 2005 Vol 15 no 6 P 572 583 doi 10 1016 j gde 2005 09 013 PMID 16230003 Pal C Papp B Lercher M Csermely P Oliver S Hurst L Chance and necessity in the evolution of minimal metabolic networks angl Nature journal 2006 Vol 440 no 7084 P 667 670 doi 10 1038 nature04568 PMID 16572170 Rennie M An introduction to the use of tracers in nutrition and metabolism angl Proc Nutr Soc journal 1999 Vol 58 no 4 P 935 944 doi 10 1017 S002966519900124X PMID 10817161 Phair R Development of kinetic models in the nonlinear world of molecular cell biology angl Metabolism journal 1997 Vol 46 no 12 P 1489 1495 doi 10 1016 S0026 0495 97 90154 2 PMID 9439549 Sterck L Rombauts S Vandepoele K Rouze P Van de Peer Y How many genes are there in plants and why are they there angl Curr Opin Plant Biol journal 2007 Vol 10 no 2 P 199 203 doi 10 1016 j pbi 2007 01 004 PMID 17289424 Borodina I Nielsen J From genomes to in silico cells via metabolic networks angl Curr Opin Biotechnol journal 2005 Vol 16 no 3 P 350 355 doi 10 1016 j copbio 2005 04 008 PMID 15961036 Gianchandani E Brautigan D Papin J Systems analyses characterize integrated functions of biochemical networks angl angl journal 2006 Vol 31 no 5 P 284 291 doi 10 1016 j tibs 2006 03 007 PMID 16616498 Duarte N C Becker S A Jamshidi N et al Global reconstruction of the human metabolic network based on genomic and bibliomic data angl Proceedings of the National Academy of Sciences of the United States of America journal 2007 February vol 104 no 6 P 1777 1782 doi 10 1073 pnas 0610772104 PMID 17267599 PMC 1794290 Goh K I Cusick M E Valle D Childs B Vidal M Barabasi A L The human disease network angl Proceedings of the National Academy of Sciences of the United States of America journal 2007 May vol 104 no 21 P 8685 8690 doi 10 1073 pnas 0701361104 PMID 17502601 PMC 1885563 Lee D S Park J Kay K A Christakis N A Oltvai Z N Barabasi A L The implications of human metabolic network topology for disease comorbidity angl Proceedings of the National Academy of Sciences of the United States of America journal 2008 July vol 105 no 29 P 9880 9885 doi 10 1073 pnas 0802208105 PMID 18599447 PMC 2481357 Csete M Doyle J Bow ties metabolism and disease angl angl journal 2004 Vol 22 no 9 P 446 450 doi 10 1016 j tibtech 2004 07 007 PMID 5249808 PMC 225248 Ma H W Zeng A P The connectivity structure giant strong component and centrality of metabolic networks angl Bioinformatics journal 2003 Vol 19 no 11 P 1423 1430 doi 10 1093 bioinformatics btg177 PMID 12874056 Zhao J Yu H Luo J H Cao Z W Li Y X Hierarchical modularity of nested bow ties in metabolic networks angl angl journal 2006 Vol 7 P 386 doi 10 1186 1471 2105 7 386 PMID 16916470 PMC 1560398 Thykaer J Nielsen J Metabolic engineering of beta lactam production angl angl journal 2003 Vol 5 no 1 P 56 69 doi 10 1016 S1096 7176 03 00003 X PMID 12749845 Gonzalez Pajuelo M Meynial Salles I Mendes F Andrade J Vasconcelos I Soucaille P Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1 3 propanediol from glycerol angl angl journal 2005 Vol 7 no 5 6 P 329 336 doi 10 1016 j ymben 2005 06 001 PMID 16095939 Kramer M Bongaerts J Bovenberg R Kremer S Muller U Orf S Wubbolts M Raeven L Metabolic engineering for microbial production of shikimic acid angl angl journal 2003 Vol 5 no 4 P 277 283 doi 10 1016 j ymben 2003 09 001 PMID 14642355 Koffas M Roberge C Lee K Stephanopoulos G Metabolic engineering neopr angl 1999 T 1 S 535 557 doi 10 1146 annurev bioeng 1 1 535 PMID 11701499 Feldman G E Majkl Foster Leningrad Nauka 1986 S 52 Dr Abu Shadi Al Roubi 1982 Ibn Al Nafis as a philosopher Symposium on Ibn al Nafis Second International Conference on Islamic Medicine Islamic Medical Organization Kuwait cf Ibnul Nafees As a Philosopher Encyclopedia of Islamic World 1 Eknoyan G Santorio Sanctorius 1561 1636 founding father of metabolic balance studies angl Am J Nephrol journal 1999 Vol 19 no 2 P 226 233 doi 10 1159 000013455 PMID 10213823 Williams H S 1904 A History of Science in Five Volumes Volume IV Modern Development of the Chemical and Biological Sciences ot 9 maya 2012 na Wayback Machine Harper and Brothers New York Retrieved on 2007 03 26 Dubos J Louis Pasteur Free Lance of Science Gollancz Quoted in Manchester K L 1995 Louis Pasteur 1822 1895 chance and the prepared mind angl angl journal 1951 Vol 13 no 12 P 511 515 doi 10 1016 S0167 7799 00 89014 9 PMID 8595136 Kinne Saffran E Kinne R Vitalism and synthesis of urea From Friedrich Wohler to Hans A Krebs angl Am J Nephrol journal 1999 Vol 19 no 2 P 290 294 doi 10 1159 000013463 PMID 10213830 Eduard Buchner s 1907 Nobel lecture ot 8 iyulya 2017 na Wayback Machine at http nobelprize org ot 5 aprelya 2006 na Wayback Machine Accessed 2007 03 20 Kornberg H Krebs and his trinity of cycles angl Nat Rev Mol Cell Biol journal 2000 Vol 1 no 3 P 225 228 doi 10 1038 35043073 PMID 11252898 Krebs H A Henseleit K Untersuchungen uber die Harnstoffbildung im tierkorper nem angl magazin 1932 Bd 210 S 33 66 Krebs H Johnson W Metabolism of ketonic acids in animal tissues angl angl journal 1937 April vol 31 no 4 P 645 660 PMID 16746382 PMC 1266984 SsylkiA G Malygin Obmen veshestv metabolizm rus chemport ru Dr R E Hurlbert Chapter VII Metabolism and Biochemistry Microbial Metabolism 1999 angl webarchive loc gov B I Rozengart P A Zarembskij end B B Frolkie ger Yu E Veltishev u detej Obmen veshestv i energii rus Bolshaya medicinskaya enciklopediya pod redakciej Petrovskogo B V 3 e izdanie M 1974 1989 T 17 Data obrasheniya 18 yanvarya 2022
Вершина